| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 
 | /*
 * stream.c -- Implementation of data streams for Atari bootstrapper
 *
 * Copyright (c) 1997 by Roman Hodek <Roman.Hodek@informatik.uni-erlangen.de>
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file COPYING in the main directory of this archive
 * for more details.
 *
 *
 * The streams implemented in this file are intended to clearly organize the
 * data sources and transformations used by bootstrap to read the kernel and
 * ramdisk image. They also free the single modules from managing data
 * buffers, minimizes the memory needed for buffers in the various stages and
 * the amount of copying between them.
 *
 * Terminology: A stream consists of a stack of modules. All of those either
 * "produce" data (e.g. read them from disk or receive them via TFTP), or do
 * transformations on data (e.g. decompress them). Producing modules must be
 * at the bottom of the stack, and they don't call modules below them. Their
 * order in the stack represents a preference which method to use to get the
 * data. Transforming modules are above the producing modules and need the
 * modules below to get the data they work on. They can call sopen(), sread()
 * and the other stream interface functions just the usual way.
 *
 * Interface functions:
 *
 *   stream_init(): Initialize the stream by removing all modules.
 *
 *   stream_push(mod): Pushes a new module MOD onto the stack. All modules
 *     must be ready before any other function is called.
 *
 *   sopen(name): Open the stream, NAME is the name of a file or some other
 *     entity to access.
 *
 *   sread(buf,cnt): Read data from the stream, just like the Unix read()
 *     function. Returns number of bytes written to BUF. This is lower than
 *     CNT only at EOF. -1 means some error.
 *
 *   sseek(whence,offset): Seek to some other location in the byte stream,
 *     arguments are as with Unix lseek(). Seeking backwards is supported only
 *     to some unspecified border, but small steps back should work after
 *     reading a small amount of data. SEEK_END as WHENCE is not supported,
 *     since the size isn't always known. Return value is the new position in
 *     the stream, or < 0 for error.
 *
 *   sclose(): Close and de-init the stream.
 *
 * Module interface:
 *
 * Each module has to supply a struct of type MODULE describing itself. The
 * struct consists of a name, a maximum buffer size, and four module methods.
 * The max. buffer size is the biggest number of bytes a call to fillbuf() can
 * return. If this is actually unlimited for the module, use some reasonable
 * value that doesn't make reading inefficient, but also doesn't waste memory.
 * 32k seems ok.
 *
 *   open(name): Open the file (or other entity) NAME. Transforming modules
 *     usually pass this request down, and may do additional internal
 *     initializations. Producing modules check whether they can supply data,
 *     and then grab the stream tail. Otherwise, they deregister (retval 1).
 *     Return value is 0 for OK, 1 for "remove me from the stream please, I
 *     can't do anything", and < 0 for some error. 1 for transforming modules
 *     means that the transformation isn't to be applied (e.g. the file isn't
 *     compressed). If goinf to return 1, the open method must call sopen()
 *     for the modules downstreams itself, and return 0 or -1 according to
 *     success of this. This allows modules to open the downstream channel,
 *     check it, and if the data seen are not applicable just return. If the
 *     upper layer would do the opening, it couldn't tell whether the stream
 *     below the current module is already open or not.
 *
 *   fillbuf(buf): Fill the buffer BUF with data. This should not write more
 *     than maxbuf bytes, but it can write less. It returns the number of
 *     bytes returned, or < 0 for an error.
 *
 *   skip(cnt): Skip CNT bytes of the stream. This method is optional and may
 *     be NULL if the module can't implement it reasonably. (E.g., on
 *     decompressing it's impossible to skip, the data in between have to
 *     decompressed anyway.) The new position in the stream is returned
 *     (this may be less than requested). A return value < 0 stands for error.
 *
 *   close(): Close this module and do any deinitializations necessary. Return
 *     0 for ok, < 0 for error.
 *
 */
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include "minmax.h"
#include "stream.h"
/* definition of the dummy head module */
MODULE head_mod = {
	"head",						/* name */
	0,							/* maxbuf (unused) */
	NULL, NULL, NULL, NULL,		/* methods */
	MOD_REST_INIT
};
static int stream_dont_display = 0;
/***************************** Prototypes *****************************/
static void stream_show_progress( void );
/************************* End of Prototypes **************************/
/* ------------------------------------------------------------------------ */
/*								Initialization								*/
/* initialize the module stack */
void stream_init( void )
{
	currmod = &head_mod;
	head_mod.up = head_mod.down = NULL;
}
/* push a module onto the stream
 * 
 * The new module is inserted after the head module, i.e. ontop of the other
 * modules registered before.
 */
void stream_push( MODULE *mod )
{
	mod->down = head_mod.down;
	mod->up = &head_mod;
	head_mod.down = mod;
	mod->down->up = mod;
}
/* ------------------------------------------------------------------------ */
/*									Macros									*/
/* go up and down the stream */
#define DOWN_MOD()														\
    do {																\
	if (!(currmod = currmod->down)) {									\
	    fprintf( stderr, "Internal error: bottom-most module %s calls "	\
		     "downstreams!\n", currmod->name );							\
	    exit( 1 );														\
	}																	\
    } while(0)
#define UP_MOD()													\
    do {															\
	if (!(currmod = currmod->up)) {									\
	    fprintf( stderr, "Internal error: topmost module %s calls "	\
		     "upstreams!\n", currmod->name );						\
	    exit( 1 );													\
	}																\
    } while(0)
/* macros for accessing the methods of current module */
#define MOD_OPEN(name)		((*currmod->open)( (name) ))
#define MOD_FILLBUF(buf)	((*currmod->fillbuf)( (buf) ))
#define MOD_SKIP(off)		((*currmod->skip)( (off) ))
#define MOD_CLOSE()			((*currmod->close)())
#define ADJUST_USERBUF(len)						\
	do {										\
		buf += (len);							\
		cnt -= (len);							\
		currmod->fpos += (len);					\
	} while(0)
#define ADJUST_MODBUF(len)						\
	do {										\
		currmod->bufp += (len);					\
		currmod->buf_cnt -= (len);				\
	} while(0)
#define TEST_ERR(e)	do { if ((e)<0) { rv = (e); goto err_out; } } while(0)
#define TEST_EOF(e) do { if ((e)==0) { currmod->eof = 1; goto out; } } while(0)
/* ------------------------------------------------------------------------ */
/*								  Functions									*/
		
/* open the stream */
int sopen( const char *name )
{
	int rv;
	
	stream_dont_display++;
	DOWN_MOD();
	rv = MOD_OPEN( name );
	if (rv > 0) {
		/* remove module from the stream */
		if (currmod->down) {
			currmod->up->down = currmod->down;
			currmod->down->up = currmod->up;
			currmod = currmod->down;
		}
		else
			/* Was the bottom-most module, i.e. no module feels responsible
			 * for producing data -> no data available :-( */
			rv = -1;
	}
	else if (rv == 0) {
		/* init buffering data */
		currmod->fpos       =
		currmod->buf_cnt    =
		currmod->eof        = 0;
		currmod->last_shown = -1;
		if (!(currmod->buf = malloc( currmod->maxbuf ))) {
			fprintf( stderr, "Out of buffer memory for module %s\n",
					 currmod->name );
			exit( 1 );
		}
		currmod->bufp = currmod->buf;
	}
	UP_MOD();
	stream_dont_display--;
	return( rv );
}
long sread( void *buf, long cnt )
{
	long len, rv;
	void *bufstart = buf;
	
	DOWN_MOD();
	if (currmod->eof) {
		return( 0 );
	}
	
	if (currmod->buf_cnt) {
		/* take data from buffer as far as possible */
		len = min( currmod->buf_cnt, cnt );
		memcpy( buf, currmod->bufp, len );
		ADJUST_USERBUF(len);
		ADJUST_MODBUF(len);
		stream_show_progress();
	}
	while( cnt >= currmod->maxbuf ) {
		/* while fillbuf chunks fit into user buffer, call fillbuf for there
		 * directly */
		len = MOD_FILLBUF( buf );
		TEST_ERR(len);
		TEST_EOF(len);
		ADJUST_USERBUF(len);
		stream_show_progress();
	}
	while( cnt ) {
		/* rest of request must be buffered */
		currmod->buf_cnt = MOD_FILLBUF( currmod->buf );
		currmod->bufp = currmod->buf;
		TEST_ERR( currmod->buf_cnt );
		TEST_EOF( currmod->buf_cnt );
		len = min( currmod->buf_cnt, cnt );
		memcpy( buf, currmod->buf, len );
		ADJUST_USERBUF(len);
		ADJUST_MODBUF(len);
		stream_show_progress();
	}
  out:
	rv = buf - bufstart;
  err_out:
	UP_MOD();
	return( rv );
}
#define RETURN(v)	do { rv = (v); goto err_out; } while(0)
	
int sseek( long offset, int whence )
{
	int rv;
	long newpos, len;
	
	DOWN_MOD();
	switch( whence ) {
	  case SEEK_SET:
		newpos = offset;
		break;
	  case SEEK_CUR:
		newpos = currmod->fpos + offset;
		break;
	  case SEEK_END:
	  default:
		/* not supported */
		fprintf( stderr, "Unsupported seek operation for module %s\n",
				 currmod->name );
		RETURN( -1 );
	}
	if (newpos == currmod->fpos)
		goto out;
	
	if (newpos < currmod->fpos) {
		/* backward seeks are only supported inside the current buffer */
		long bufstartpos = currmod->fpos - (currmod->bufp - currmod->buf);
		long back;
		if (!currmod->buf_cnt || newpos < bufstartpos) {
			fprintf( stderr, "Unsupported backward seek in module %s "
					 "(bufstart=%ld, dstpos=%ld)\n",
					 currmod->name,
					 currmod->buf_cnt ? bufstartpos : -1,
					 newpos );
			RETURN( -1 );
		}
		back = currmod->fpos - newpos;
		currmod->bufp -= back;
		currmod->buf_cnt += back;
		currmod->fpos = newpos;
		goto out;
	}
	if (currmod->buf_cnt && newpos <= currmod->fpos + currmod->buf_cnt) {
		/* seek is forward inside current buffer */
		long fwd = newpos - currmod->fpos;
		ADJUST_MODBUF( fwd );
		currmod->fpos += fwd;
		goto out;
	}
	/* otherwise: always need to advance buffer (if present) */
	if (currmod->buf_cnt) {
		currmod->fpos += currmod->buf_cnt;
		currmod->buf_cnt = 0;
	}
	/* let the module skip, if it can */
	if (currmod->skip) {
		len = MOD_SKIP( newpos - currmod->fpos );
		TEST_ERR( len );
		currmod->fpos = len;
	}
	/* otherwise, read and junk the data */
	while( currmod->fpos < newpos ) {
		/* rest of request must be buffered */
		currmod->buf_cnt = MOD_FILLBUF( currmod->buf );
		currmod->bufp = currmod->buf;
		TEST_ERR( currmod->buf_cnt );
		TEST_EOF( currmod->buf_cnt );
		len = min( currmod->buf_cnt, newpos-currmod->fpos );
		ADJUST_MODBUF(len);
		currmod->fpos += len;
	}
	stream_show_progress();
  out:
	rv = currmod->fpos;
  err_out:
	UP_MOD();
	return( rv );
}
int sclose( void )
{
	int rv;
	stream_show_progress();
	printf( "\n" );
	stream_dont_display++;
	DOWN_MOD();
	rv = MOD_CLOSE();
	free( currmod->buf );
	UP_MOD();
	stream_dont_display--;
	return( rv );
}
#define SHOW_SHIFT	13
static void stream_show_progress( void )
{
	static char rotchar[4] = { '|', '/', '-', '\\' };
	MODULE *p;
	int notnull = 0;
	long spos = currmod->fpos >> SHOW_SHIFT;
	
	if (stream_dont_display || spos == currmod->last_shown)
		return;
	currmod->last_shown = spos;
	printf( "\r" );
	for( p = head_mod.down; p; p = p->down ) {
		if (!p->fpos && notnull)
			break;
		if (p->fpos)
			notnull = 1;
		printf( " %c %7ld %-8s ",
				rotchar[(p->fpos / max(p->maxbuf,1<<SHOW_SHIFT)) & 3],
				p->fpos, p->name );
	}
	fflush( stdout );
}
/* Local Variables: */
/* tab-width: 4     */
/* End:             */
 |