1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
#include <audio/audiolib.h>
static char *rcsid = "$Id: nas.c,v 1.6 1998/02/21 14:55:43 david Exp $";
#define FALSE 0
#define TRUE 1
#define SAMPLE_RATE 8000
static nasbug = FALSE; /* Debug Flag */
static sound_enabled = FALSE;
static AuServer *au_server;
static AuDeviceID *au_device;
static AuFlowID au_channel[4];
static int waveform = AuWaveFormSquare;
static int au_channel_clock[4] =
{64000, 64000, 64000, 64000};
static int M[4] =
{1, 1, 1, 1};
static int AUDCTL = 0x00;
static int AUDF[4] =
{0, 0, 0, 0};
static int AUDC[4] =
{0, 0, 0, 0};
void NAS_Initialise(int *argc, char *argv[])
{
int i, j;
for (i = j = 1; i < *argc; i++) {
if (strcmp(argv[i], "-sound") == 0)
sound_enabled = TRUE;
else if (strcmp(argv[i], "-squarewave") == 0)
waveform = AuWaveFormSquare;
else if (strcmp(argv[i], "-sinewave") == 0)
waveform = AuWaveFormSine;
else if (strcmp(argv[i], "-nasbug") == 0)
nasbug = TRUE;
else {
if (strcmp(argv[i], "-help") == 0) {
printf("\t-sound Enable NAS sound support\n");
printf("\t-squarewave Generate sound with a square wave\n");
printf("\t-sinewave Generate sound with a sine wave\n");
printf("\t-nasbug Enable debug code in nas.c\n");
}
argv[j++] = argv[i];
}
}
*argc = j;
if (sound_enabled) {
au_server = AuOpenServer(NULL, 0, NULL, 0, NULL, NULL);
if (!au_server) {
printf("Unable to open audio server\n");
exit(1);
}
for (au_device = NULL, i = 0; i < AuServerNumDevices(au_server); i++) {
if ((AuDeviceKind(AuServerDevice(au_server, i)) ==
AuComponentKindPhysicalOutput) &&
AuDeviceNumTracks(AuServerDevice(au_server, i)) == 1) {
au_device = (AuDeviceID *) AuDeviceIdentifier(AuServerDevice(au_server, i));
break;
}
}
au_channel[0] = AuCreateFlow(au_server, NULL);
au_channel[1] = AuCreateFlow(au_server, NULL);
au_channel[2] = AuCreateFlow(au_server, NULL);
au_channel[3] = AuCreateFlow(au_server, NULL);
for (i = 0; i < 4; i++) {
AuElement elements[3];
int freq = 0;
int volume = AuFixedPointFromFraction(0, 100);
AuMakeElementImportWaveForm(&elements[0], SAMPLE_RATE,
waveform,
AuUnlimitedSamples,
freq,
0, NULL);
AuMakeElementMultiplyConstant(&elements[1], 0, volume);
AuMakeElementExportDevice(&elements[2], 1, (int) au_device, SAMPLE_RATE,
AuUnlimitedSamples, 0, NULL);
AuSetElements(au_server, au_channel[i], AuTrue, 3, elements, NULL);
AuStartFlow(au_server, au_channel[i], NULL);
}
}
}
void NAS_Exit(void)
{
if (sound_enabled) {
int i;
for (i = 0; i < 4; i++) {
AuStopFlow(au_server, au_channel[i], NULL);
}
AuCloseServer(au_server);
}
}
NAS_SetFrequency(int channel, int frequency)
{
if (frequency < 8000) {
static AuElementParameters parms;
parms.flow = channel;
parms.element_num = 0;
parms.num_parameters = AuParmsImportWaveForm;
parms.parameters[AuParmsImportWaveFormFrequency] = frequency;
parms.parameters[AuParmsImportWaveFormNumSamples] = AuUnlimitedSamples;
AuSetElementParameters(au_server, 1, &parms, NULL);
}
}
NAS_SetVolume(int channel, int volume)
{
static AuElementParameters parms;
parms.flow = channel;
parms.element_num = 1;
parms.num_parameters = AuParmsMultiplyConstant;
parms.parameters[AuParmsMultiplyConstantConstant] = volume;
AuSetElementParameters(au_server, 1, &parms, NULL);
}
static int join12 = FALSE;
static int join34 = FALSE;
void NAS_UpdateSound(void)
{
if (sound_enabled) {
int i;
for (i = 0; i < 4; i++) {
int freqtmp;
int flag = FALSE;
if ((i < 2) && join12) {
if (i == 1) {
int N = ((AUDF[1] << 8) | AUDF[0]) + M[0];
if (nasbug)
printf("join12: N=%d\n", N);
freqtmp = au_channel_clock[0] / (N + N);
flag = TRUE;
}
}
else if ((i >= 2) && join34) {
if (i == 3) {
int N = ((AUDF[3] << 8) | AUDF[2]) + M[2];
if (nasbug)
printf("join34: N=%d\n", N);
freqtmp = au_channel_clock[2] / (N + N);
flag = TRUE;
}
}
else {
int N = AUDF[i] + M[i];
freqtmp = au_channel_clock[i] / (N + N);
flag = TRUE;
}
if (flag) {
int distortion = AUDC[i] & 0xf0;
int voltmp;
if ((distortion == 0xa0) || (distortion == 0xd0))
voltmp = AuFixedPointFromFraction((AUDC[i] & 0x0f), 30);
else
voltmp = AuFixedPointFromFraction(0, 30);
NAS_SetFrequency(au_channel[i], freqtmp);
NAS_SetVolume(au_channel[i], voltmp);
}
}
AuFlush(au_server);
}
}
void Atari_AUDC(int channel, int byte)
{
AUDC[channel - 1] = byte;
}
void Atari_AUDF(int channel, int byte)
{
AUDF[channel - 1] = byte;
}
void Atari_AUDCTL(int byte)
{
AUDCTL = byte;
if (byte & 0x01) {
au_channel_clock[0] = 15000;
au_channel_clock[1] = 15000;
au_channel_clock[2] = 15000;
au_channel_clock[3] = 15000;
}
else {
au_channel_clock[0] = 64000;
au_channel_clock[1] = 64000;
au_channel_clock[2] = 64000;
au_channel_clock[3] = 64000;
}
M[0] = M[1] = M[2] = M[3] = 1;
join34 = (byte & 0x08) ? TRUE : FALSE; /* Clock channel 4 with channel 3 */
join12 = (byte & 0x10) ? TRUE : FALSE; /* Clock channel 2 with channel 1 */
if (byte & 0x20) {
au_channel_clock[2] = 1790000; /* Clock channel 3 with 1.79 MHZ */
M[2] = (join34) ? 7 : 4;
}
if (byte & 0x40) {
au_channel_clock[0] = 1790000; /* Clock channel 1 with 1.79 MHZ */
M[0] = (join12) ? 7 : 4;
}
if (nasbug && (byte & 0xfe))
printf("AUDCTL: %02x\n", byte);
}
|