1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
|
/*****************************************************************************/
/* */
/* Module: POKEY Chip Emulator, V2.4 */
/* Purpose: To emulate the sound generation hardware of the Atari POKEY chip. */
/* Author: Ron Fries */
/* */
/* Revision History: */
/* */
/* 09/22/96 - Ron Fries - Initial Release */
/* 01/14/97 - Ron Fries - Corrected a minor problem to improve sound quality */
/* Also changed names from POKEY11.x to POKEY.x */
/* 01/17/97 - Ron Fries - Added support for multiple POKEY chips. */
/* 03/31/97 - Ron Fries - Made some minor mods for MAME (changed to signed */
/* 8-bit sample, increased gain range, removed */
/* _disable() and _enable().) */
/* 04/06/97 - Brad Oliver - Some cross-platform modifications. Added */
/* big/little endian #defines, removed <dos.h>, */
/* conditional defines for TRUE/FALSE */
/* 01/19/98 - Ron Fries - Changed signed/unsigned sample support to a */
/* compile-time option. Defaults to unsigned - */
/* define SIGNED_SAMPLES to create signed. */
/* 03/22/98 - Ron Fries - Added 'filter' support to channels 1 & 2. */
/* */
/* V2.0 Detailed Changes */
/* --------------------- */
/* */
/* Now maintains both a POLY9 and POLY17 counter. Though this slows the */
/* emulator in general, it was required to support mutiple POKEYs since */
/* each chip can individually select POLY9 or POLY17 operation. Also, */
/* eliminated the Poly17_size variable. */
/* */
/* Changed address of POKEY chip. In the original, the chip was fixed at */
/* location D200 for compatibility with the Atari 800 line of 8-bit */
/* computers. The update function now only examines the lower four bits, so */
/* the location for all emulated chips is effectively xxx0 - xxx8. */
/* */
/* The Update_pokey_sound function has two additional parameters which */
/* selects the desired chip and selects the desired gain. */
/* */
/* Added clipping to reduce distortion, configurable at compile-time. */
/* */
/* The Pokey_sound_init function has an additional parameter which selects */
/* the number of pokey chips to emulate. */
/* */
/* The output will be amplified by gain/16. If the output exceeds the */
/* maximum value after the gain, it will be limited to reduce distortion. */
/* The best value for the gain depends on the number of POKEYs emulated */
/* and the maximum volume used. The maximum possible output for each */
/* channel is 15, making the maximum possible output for a single chip to */
/* be 60. Assuming all four channels on the chip are used at full volume, */
/* a gain of 64 can be used without distortion. If 4 POKEY chips are */
/* emulated and all 16 channels are used at full volume, the gain must be */
/* no more than 16 to prevent distortion. Of course, if only a few of the */
/* 16 channels are used or not all channels are used at full volume, a */
/* larger gain can be used. */
/* */
/* The Pokey_process routine automatically processes and mixes all selected */
/* chips/channels. No additional calls or functions are required. */
/* */
/* The unoptimized Pokey_process2() function has been removed. */
/* */
/*****************************************************************************/
/* */
/* License Information and Copyright Notice */
/* ======================================== */
/* */
/* PokeySound is Copyright(c) 1996-1998 by Ron Fries */
/* */
/* This library is free software; you can redistribute it and/or modify it */
/* under the terms of version 2 of the GNU Library General Public License */
/* as published by the Free Software Foundation. */
/* */
/* This library is distributed in the hope that it will be useful, but */
/* WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library */
/* General Public License for more details. */
/* To obtain a copy of the GNU Library General Public License, write to the */
/* Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/* */
/* Any permitted reproduction of these routines, in whole or in part, must */
/* bear this legend. */
/* */
/*****************************************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "pokeysnd.h"
/* CONSTANT DEFINITIONS */
/* definitions for AUDCx (D201, D203, D205, D207) */
#define NOTPOLY5 0x80 /* selects POLY5 or direct CLOCK */
#define POLY4 0x40 /* selects POLY4 or POLY17 */
#define PURE 0x20 /* selects POLY4/17 or PURE tone */
#define VOL_ONLY 0x10 /* selects VOLUME OUTPUT ONLY */
#define VOLUME_MASK 0x0f /* volume mask */
/* definitions for AUDCTL (D208) */
#define POLY9 0x80 /* selects POLY9 or POLY17 */
#define CH1_179 0x40 /* selects 1.78979 MHz for Ch 1 */
#define CH3_179 0x20 /* selects 1.78979 MHz for Ch 3 */
#define CH1_CH2 0x10 /* clocks channel 1 w/channel 2 */
#define CH3_CH4 0x08 /* clocks channel 3 w/channel 4 */
#define CH1_FILTER 0x04 /* selects channel 1 high pass filter */
#define CH2_FILTER 0x02 /* selects channel 2 high pass filter */
#define CLOCK_15 0x01 /* selects 15.6999kHz or 63.9210kHz */
/* for accuracy, the 64kHz and 15kHz clocks are exact divisions of
the 1.79MHz clock */
#define DIV_64 28 /* divisor for 1.79MHz clock to 64 kHz */
#define DIV_15 114 /* divisor for 1.79MHz clock to 15 kHz */
/* the size (in entries) of the 4 polynomial tables */
#define POLY4_SIZE 0x000f
#define POLY5_SIZE 0x001f
#define POLY9_SIZE 0x01ff
#ifdef COMP16 /* if 16-bit compiler */
#define POLY17_SIZE 0x00007fffL /* reduce to 15 bits for simplicity */
#else
#define POLY17_SIZE 0x0001ffffL /* else use the full 17 bits */
#endif
/* channel/chip definitions */
#define CHAN1 0
#define CHAN2 1
#define CHAN3 2
#define CHAN4 3
#define CHIP1 0
#define CHIP2 4
#define CHIP3 8
#define CHIP4 12
#define SAMPLE 127
/* LBO - changed for cross-platform support */
#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE 1
#endif
/* GLOBAL VARIABLE DEFINITIONS */
/* number of pokey chips currently emulated */
static uint8 Num_pokeys;
/* structures to hold the 9 pokey control bytes */
static uint8 AUDF[4 * MAXPOKEYS]; /* AUDFx (D200, D202, D204, D206) */
static uint8 AUDC[4 * MAXPOKEYS]; /* AUDCx (D201, D203, D205, D207) */
static uint8 AUDCTL[MAXPOKEYS]; /* AUDCTL (D208) */
static uint8 AUDV[4 * MAXPOKEYS]; /* Channel volume - derived */
static uint8 Outbit[4 * MAXPOKEYS]; /* current state of the output (high or low) */
static uint8 Outvol[4 * MAXPOKEYS]; /* last output volume for each channel */
/* Initialze the bit patterns for the polynomials. */
/* The 4bit and 5bit patterns are the identical ones used in the pokey chip. */
/* Though the patterns could be packed with 8 bits per byte, using only a */
/* single bit per byte keeps the math simple, which is important for */
/* efficient processing. */
static uint8 bit4[POLY4_SIZE] =
#ifndef POKEY23_POLY
{1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0}; /* new table invented by Perry */
#else
{1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0}; /* original POKEY 2.3 table */
#endif
static uint8 bit5[POLY5_SIZE] =
#ifndef POKEY23_POLY
{1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0};
#else
{0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1};
#endif
static uint8 bit17[POLY17_SIZE]; /* Rather than have a table with 131071 */
/* entries, I use a random number generator. */
/* It shouldn't make much difference since */
/* the pattern rarely repeats anyway. */
static uint32 Poly_adjust; /* the amount that the polynomial will need */
/* to be adjusted to process the next bit */
static uint32 P4 = 0, /* Global position pointer for the 4-bit POLY array */
P5 = 0, /* Global position pointer for the 5-bit POLY array */
P9 = 0, /* Global position pointer for the 9-bit POLY array */
P17 = 0; /* Global position pointer for the 17-bit POLY array */
static uint32 Div_n_cnt[4 * MAXPOKEYS], /* Divide by n counter. one for each channel */
Div_n_max[4 * MAXPOKEYS]; /* Divide by n maximum, one for each channel */
static uint32 Samp_n_max, /* Sample max. For accuracy, it is *256 */
Samp_n_cnt[2]; /* Sample cnt. */
static uint32 Base_mult[MAXPOKEYS]; /* selects either 64Khz or 15Khz clock mult */
extern int atari_speaker;
/*****************************************************************************/
/* In my routines, I treat the sample output as another divide by N counter */
/* For better accuracy, the Samp_n_cnt has a fixed binary decimal point */
/* which has 8 binary digits to the right of the decimal point. I use a two */
/* byte array to give me a minimum of 40 bits, and then use pointer math to */
/* reference either the 24.8 whole/fraction combination or the 32-bit whole */
/* only number. This is mainly used to keep the math simple for */
/* optimization. See below: */
/* */
/* Representation on little-endian machines: */
/* xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx | xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx */
/* fraction whole whole whole whole unused unused unused */
/* */
/* Samp_n_cnt[0] gives me a 32-bit int 24 whole bits with 8 fractional bits, */
/* while (uint32 *)((uint8 *)(&Samp_n_cnt[0])+1) gives me the 32-bit whole */
/* number only. */
/* */
/* Representation on big-endian machines: */
/* xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx | xxxxxxxx xxxxxxxx xxxxxxxx.xxxxxxxx */
/* unused unused unused whole whole whole whole fraction */
/* */
/* Samp_n_cnt[1] gives me a 32-bit int 24 whole bits with 8 fractional bits, */
/* while (uint32 *)((uint8 *)(&Samp_n_cnt[0])+3) gives me the 32-bit whole */
/* number only. */
/*****************************************************************************/
/*****************************************************************************/
/* Module: Pokey_sound_init() */
/* Purpose: to handle the power-up initialization functions */
/* these functions should only be executed on a cold-restart */
/* */
/* Author: Ron Fries */
/* Date: January 1, 1997 */
/* */
/* Inputs: freq17 - the value for the '1.79MHz' Pokey audio clock */
/* playback_freq - the playback frequency in samples per second */
/* num_pokeys - specifies the number of pokey chips to be emulated */
/* */
/* Outputs: Adjusts local globals - no return value */
/* */
/*****************************************************************************/
void Pokey_sound_init(uint32 freq17, uint16 playback_freq, uint8 num_pokeys)
{
uint8 chan, chip;
int32 n;
/* fill the 17bit polynomial with random bits */
for (n = 0; n < POLY17_SIZE; n++) {
bit17[n] = rand() & 0x01; /* fill poly 17 with random bits */
}
/* disable interrupts to handle critical sections */
/* _disable(); *//* RSF - removed for portability 31-MAR-97 */
/* start all of the polynomial counters at zero */
Poly_adjust = 0;
P4 = 0;
P5 = 0;
P9 = 0;
P17 = 0;
/* calculate the sample 'divide by N' value based on the playback freq. */
Samp_n_max = ((uint32) freq17 << 8) / playback_freq;
Samp_n_cnt[0] = 0; /* initialize all bits of the sample */
Samp_n_cnt[1] = 0; /* 'divide by N' counter */
for (chan = 0; chan < (MAXPOKEYS * 4); chan++) {
Outvol[chan] = 0;
Outbit[chan] = 0;
Div_n_cnt[chan] = 0;
Div_n_max[chan] = 0x7fffffffL;
AUDC[chan] = 0;
AUDF[chan] = 0;
AUDV[chan] = 0;
}
for (chip = 0; chip < MAXPOKEYS; chip++) {
AUDCTL[chip] = 0;
Base_mult[chip] = DIV_64;
}
/* set the number of pokey chips currently emulated */
Num_pokeys = num_pokeys;
/* _enable(); *//* RSF - removed for portability 31-MAR-97 */
}
/*****************************************************************************/
/* Module: Update_pokey_sound() */
/* Purpose: To process the latest control values stored in the AUDF, AUDC, */
/* and AUDCTL registers. It pre-calculates as much information as */
/* possible for better performance. This routine has not been */
/* optimized. */
/* */
/* Author: Ron Fries */
/* Date: January 1, 1997 */
/* */
/* Inputs: addr - the address of the parameter to be changed */
/* val - the new value to be placed in the specified address */
/* gain - specified as an 8-bit fixed point number - use 1 for no */
/* amplification (output is multiplied by gain) */
/* */
/* Outputs: Adjusts local globals - no return value */
/* */
/*****************************************************************************/
void Update_pokey_sound(uint16 addr, uint8 val, uint8 chip, uint8 gain)
{
uint32 new_val = 0;
uint8 chan;
uint8 chan_mask;
uint8 chip_offs;
/* disable interrupts to handle critical sections */
/* _disable(); *//* RSF - removed for portability 31-MAR-97 */
/* calculate the chip_offs for the channel arrays */
chip_offs = chip << 2;
/* determine which address was changed */
switch (addr & 0x0f) {
case AUDF1_C:
AUDF[CHAN1 + chip_offs] = val;
chan_mask = 1 << CHAN1;
if (AUDCTL[chip] & CH1_CH2) /* if ch 1&2 tied together */
chan_mask |= 1 << CHAN2; /* then also change on ch2 */
break;
case AUDC1_C:
AUDC[CHAN1 + chip_offs] = val;
/* RSF - changed gain (removed >> 4) 31-MAR-97 */
AUDV[CHAN1 + chip_offs] = (val & VOLUME_MASK) * gain;
chan_mask = 1 << CHAN1;
break;
case AUDF2_C:
AUDF[CHAN2 + chip_offs] = val;
chan_mask = 1 << CHAN2;
break;
case AUDC2_C:
AUDC[CHAN2 + chip_offs] = val;
/* RSF - changed gain (removed >> 4) 31-MAR-97 */
AUDV[CHAN2 + chip_offs] = (val & VOLUME_MASK) * gain;
chan_mask = 1 << CHAN2;
break;
case AUDF3_C:
AUDF[CHAN3 + chip_offs] = val;
chan_mask = 1 << CHAN3;
if (AUDCTL[chip] & CH3_CH4) /* if ch 3&4 tied together */
chan_mask |= 1 << CHAN4; /* then also change on ch4 */
break;
case AUDC3_C:
AUDC[CHAN3 + chip_offs] = val;
/* RSF - changed gain (removed >> 4) 31-MAR-97 */
AUDV[CHAN3 + chip_offs] = (val & VOLUME_MASK) * gain;
chan_mask = 1 << CHAN3;
break;
case AUDF4_C:
AUDF[CHAN4 + chip_offs] = val;
chan_mask = 1 << CHAN4;
break;
case AUDC4_C:
AUDC[CHAN4 + chip_offs] = val;
/* RSF - changed gain (removed >> 4) 31-MAR-97 */
AUDV[CHAN4 + chip_offs] = (val & VOLUME_MASK) * gain;
chan_mask = 1 << CHAN4;
break;
case AUDCTL_C:
AUDCTL[chip] = val;
chan_mask = 15; /* all channels */
/* determine the base multiplier for the 'div by n' calculations */
if (AUDCTL[chip] & CLOCK_15)
Base_mult[chip] = DIV_15;
else
Base_mult[chip] = DIV_64;
break;
default:
chan_mask = 0;
break;
}
/************************************************************/
/* As defined in the manual, the exact Div_n_cnt values are */
/* different depending on the frequency and resolution: */
/* 64 kHz or 15 kHz - AUDF + 1 */
/* 1 MHz, 8-bit - AUDF + 4 */
/* 1 MHz, 16-bit - AUDF[CHAN1]+256*AUDF[CHAN2] + 7 */
/************************************************************/
/* only reset the channels that have changed */
if (chan_mask & (1 << CHAN1)) {
/* process channel 1 frequency */
if (AUDCTL[chip] & CH1_179)
new_val = AUDF[CHAN1 + chip_offs] + 4;
else
new_val = (AUDF[CHAN1 + chip_offs] + 1) * Base_mult[chip];
if (new_val != Div_n_max[CHAN1 + chip_offs]) {
Div_n_max[CHAN1 + chip_offs] = new_val;
if (Div_n_cnt[CHAN1 + chip_offs] > new_val) {
Div_n_cnt[CHAN1 + chip_offs] = new_val;
}
}
}
if (chan_mask & (1 << CHAN2)) {
/* process channel 2 frequency */
if (AUDCTL[chip] & CH1_CH2) {
if (AUDCTL[chip] & CH1_179)
new_val = AUDF[CHAN2 + chip_offs] * 256 +
AUDF[CHAN1 + chip_offs] + 7;
else
new_val = (AUDF[CHAN2 + chip_offs] * 256 +
AUDF[CHAN1 + chip_offs] + 1) * Base_mult[chip];
}
else
new_val = (AUDF[CHAN2 + chip_offs] + 1) * Base_mult[chip];
if (new_val != Div_n_max[CHAN2 + chip_offs]) {
Div_n_max[CHAN2 + chip_offs] = new_val;
if (Div_n_cnt[CHAN2 + chip_offs] > new_val) {
Div_n_cnt[CHAN2 + chip_offs] = new_val;
}
}
}
if (chan_mask & (1 << CHAN3)) {
/* process channel 3 frequency */
if (AUDCTL[chip] & CH3_179)
new_val = AUDF[CHAN3 + chip_offs] + 4;
else
new_val = (AUDF[CHAN3 + chip_offs] + 1) * Base_mult[chip];
if (new_val != Div_n_max[CHAN3 + chip_offs]) {
Div_n_max[CHAN3 + chip_offs] = new_val;
if (Div_n_cnt[CHAN3 + chip_offs] > new_val) {
Div_n_cnt[CHAN3 + chip_offs] = new_val;
}
}
}
if (chan_mask & (1 << CHAN4)) {
/* process channel 4 frequency */
if (AUDCTL[chip] & CH3_CH4) {
if (AUDCTL[chip] & CH3_179)
new_val = AUDF[CHAN4 + chip_offs] * 256 +
AUDF[CHAN3 + chip_offs] + 7;
else
new_val = (AUDF[CHAN4 + chip_offs] * 256 +
AUDF[CHAN3 + chip_offs] + 1) * Base_mult[chip];
}
else
new_val = (AUDF[CHAN4 + chip_offs] + 1) * Base_mult[chip];
if (new_val != Div_n_max[CHAN4 + chip_offs]) {
Div_n_max[CHAN4 + chip_offs] = new_val;
if (Div_n_cnt[CHAN4 + chip_offs] > new_val) {
Div_n_cnt[CHAN4 + chip_offs] = new_val;
}
}
}
/* if channel is volume only, set current output */
for (chan = CHAN1; chan <= CHAN4; chan++) {
if (chan_mask & (1 << chan)) {
/* I've disabled any frequencies that exceed the sampling
frequency. There isn't much point in processing frequencies
that the hardware can't reproduce. I've also disabled
processing if the volume is zero. */
/* if the channel is volume only */
/* or the channel is off (volume == 0) */
/* or the channel freq is greater than the playback freq */
if ((AUDC[chan + chip_offs] & VOL_ONLY) ||
((AUDC[chan + chip_offs] & VOLUME_MASK) == 0) ||
(Div_n_max[chan + chip_offs] < (Samp_n_max >> 8))) {
/* indicate the channel is 'on' */
Outvol[chan + chip_offs] = 1;
/* can only ignore channel if filtering off */
if ((chan == CHAN3 && !(AUDCTL[chip] & CH1_FILTER)) ||
(chan == CHAN4 && !(AUDCTL[chip] & CH2_FILTER)) ||
(chan == CHAN1) ||
(chan == CHAN2) ||
(Div_n_max[chan + chip_offs] < (Samp_n_max >> 8))) {
/* and set channel freq to max to reduce processing */
Div_n_max[chan + chip_offs] = 0x7fffffffL;
Div_n_cnt[chan + chip_offs] = 0x7fffffffL;
}
}
}
}
/* _enable(); *//* RSF - removed for portability 31-MAR-97 */
}
/*****************************************************************************/
/* Module: Pokey_process() */
/* Purpose: To fill the output buffer with the sound output based on the */
/* pokey chip parameters. */
/* */
/* Author: Ron Fries */
/* Date: January 1, 1997 */
/* */
/* Inputs: *buffer - pointer to the buffer where the audio output will */
/* be placed */
/* n - size of the playback buffer */
/* num_pokeys - number of currently active pokeys to process */
/* */
/* Outputs: the buffer will be filled with n bytes of audio - no return val */
/* */
/*****************************************************************************/
void Pokey_process(register uint8 * buffer, register uint16 n)
{
register uint32 *div_n_ptr;
register uint32 *samp_cnt_w_ptr;
register uint32 event_min;
register uint8 next_event;
#ifdef CLIP /* if clipping is selected */
register int16 cur_val; /* then we have to count as 16-bit signed */
#else
register uint8 cur_val; /* otherwise we'll simplify as 8-bit unsigned */
#endif
register uint8 *out_ptr;
register uint8 audc;
register uint8 toggle;
register uint8 count;
register uint8 *vol_ptr;
/* set a pointer to the whole portion of the samp_n_cnt */
#ifdef POKEYSND_BIG_ENDIAN
samp_cnt_w_ptr = (uint32 *) ((uint8 *) (&Samp_n_cnt[0]) + 3);
#else
samp_cnt_w_ptr = (uint32 *) ((uint8 *) (&Samp_n_cnt[0]) + 1);
#endif
/* set a pointer for optimization */
out_ptr = Outvol;
vol_ptr = AUDV;
/* The current output is pre-determined and then adjusted based on each */
/* output change for increased performance (less over-all math). */
/* add the output values of all 4 channels */
cur_val = SAMP_MID;
count = Num_pokeys;
do {
cur_val -= *vol_ptr / 2;
if (*out_ptr++)
cur_val += *vol_ptr;
vol_ptr++;
cur_val -= *vol_ptr / 2;
if (*out_ptr++)
cur_val += *vol_ptr;
vol_ptr++;
cur_val -= *vol_ptr / 2;
if (*out_ptr++)
cur_val += *vol_ptr;
vol_ptr++;
cur_val -= *vol_ptr / 2;
if (*out_ptr++)
cur_val += *vol_ptr;
vol_ptr++;
count--;
} while (count);
#ifdef USE_DOSSOUND
cur_val += 32 * atari_speaker;
#endif
/* loop until the buffer is filled */
while (n) {
/* Normally the routine would simply decrement the 'div by N' */
/* counters and react when they reach zero. Since we normally */
/* won't be processing except once every 80 or so counts, */
/* I've optimized by finding the smallest count and then */
/* 'accelerated' time by adjusting all pointers by that amount. */
/* find next smallest event (either sample or chan 1-4) */
next_event = SAMPLE;
event_min = *samp_cnt_w_ptr;
div_n_ptr = Div_n_cnt;
count = 0;
do {
/* Though I could have used a loop here, this is faster */
if (*div_n_ptr <= event_min) {
event_min = *div_n_ptr;
next_event = CHAN1 + (count << 2);
}
div_n_ptr++;
if (*div_n_ptr <= event_min) {
event_min = *div_n_ptr;
next_event = CHAN2 + (count << 2);
}
div_n_ptr++;
if (*div_n_ptr <= event_min) {
event_min = *div_n_ptr;
next_event = CHAN3 + (count << 2);
}
div_n_ptr++;
if (*div_n_ptr <= event_min) {
event_min = *div_n_ptr;
next_event = CHAN4 + (count << 2);
}
div_n_ptr++;
count++;
} while (count < Num_pokeys);
count = Num_pokeys;
do {
/* decrement all counters by the smallest count found */
/* again, no loop for efficiency */
div_n_ptr--;
*div_n_ptr -= event_min;
div_n_ptr--;
*div_n_ptr -= event_min;
div_n_ptr--;
*div_n_ptr -= event_min;
div_n_ptr--;
*div_n_ptr -= event_min;
count--;
} while (count);
*samp_cnt_w_ptr -= event_min;
/* since the polynomials require a mod (%) function which is
division, I don't adjust the polynomials on the SAMPLE events,
only the CHAN events. I have to keep track of the change,
though. */
Poly_adjust += event_min;
/* if the next event is a channel change */
if (next_event != SAMPLE) {
/* shift the polynomial counters */
P4 = (P4 + Poly_adjust) % POLY4_SIZE;
P5 = (P5 + Poly_adjust) % POLY5_SIZE;
P9 = (P9 + Poly_adjust) % POLY9_SIZE;
P17 = (P17 + Poly_adjust) % POLY17_SIZE;
/* reset the polynomial adjust counter to zero */
Poly_adjust = 0;
/* adjust channel counter */
Div_n_cnt[next_event] += Div_n_max[next_event];
/* get the current AUDC into a register (for optimization) */
audc = AUDC[next_event];
/* set a pointer to the current output (for opt...) */
out_ptr = &Outvol[next_event];
/* assume no changes to the output */
toggle = FALSE;
/* From here, a good understanding of the hardware is required */
/* to understand what is happening. I won't be able to provide */
/* much description to explain it here. */
/* if VOLUME only then nothing to process */
if (!(audc & VOL_ONLY)) {
/* if the output is pure or the output is poly5 and the poly5 bit */
/* is set */
if ((audc & NOTPOLY5) || bit5[P5]) {
/* if the PURE bit is set */
if (audc & PURE) {
/* then simply toggle the output */
toggle = TRUE;
}
/* otherwise if POLY4 is selected */
else if (audc & POLY4) {
/* then compare to the poly4 bit */
toggle = (bit4[P4] == !(*out_ptr));
}
else {
/* if 9-bit poly is selected on this chip */
if (AUDCTL[next_event >> 2] & POLY9) {
/* compare to the poly9 bit */
toggle = (bit17[P9] == !(*out_ptr));
}
else {
/* otherwise compare to the poly17 bit */
toggle = (bit17[P17] == !(*out_ptr));
}
}
}
}
/* check channel 1 filter (clocked by channel 3) */
if (AUDCTL[next_event >> 2] & CH1_FILTER) {
/* if we're processing channel 3 */
if ((next_event & 0x03) == CHAN3) {
/* check output of channel 1 on same chip */
if (Outvol[next_event & 0xfd]) {
/* if on, turn it off */
Outvol[next_event & 0xfd] = 0;
cur_val -= AUDV[next_event & 0xfd];
}
}
}
/* check channel 2 filter (clocked by channel 4) */
if (AUDCTL[next_event >> 2] & CH2_FILTER) {
/* if we're processing channel 4 */
if ((next_event & 0x03) == CHAN4) {
/* check output of channel 2 on same chip */
if (Outvol[next_event & 0xfd]) {
/* if on, turn it off */
Outvol[next_event & 0xfd] = 0;
cur_val -= AUDV[next_event & 0xfd];
}
}
}
/* if the current output bit has changed */
if (toggle) {
if (*out_ptr) {
/* remove this channel from the signal */
cur_val -= AUDV[next_event];
/* and turn the output off */
*out_ptr = 0;
}
else {
/* turn the output on */
*out_ptr = 1;
/* and add it to the output signal */
cur_val += AUDV[next_event];
}
}
}
else { /* otherwise we're processing a sample */
/* adjust the sample counter - note we're using the 24.8 integer
which includes an 8 bit fraction for accuracy */
#ifdef POKEYSND_BIG_ENDIAN
*(Samp_n_cnt + 1) += Samp_n_max;
#else
*Samp_n_cnt += Samp_n_max;
#endif
#ifdef CLIP /* if clipping is selected */
if (cur_val > SAMP_MAX) { /* then check high limit */
*buffer++ = (uint8) SAMP_MAX; /* and limit if greater */
}
else if (cur_val < SAMP_MIN) { /* else check low limit */
*buffer++ = (uint8) SAMP_MIN; /* and limit if less */
}
else { /* otherwise use raw value */
*buffer++ = (uint8) cur_val;
}
#else
*buffer++ = (uint8) cur_val; /* clipping not selected, use value */
#endif
/* and indicate one less byte in the buffer */
n--;
}
}
}
|