File: functions.s

package info (click to toggle)
atari800 5.2.0-2
  • links: PTS, VCS
  • area: contrib
  • in suites: forky, sid, trixie
  • size: 7,196 kB
  • sloc: ansic: 86,829; asm: 18,694; sh: 3,173; cpp: 2,798; java: 2,453; xml: 957; makefile: 727; perl: 334; pascal: 178
file content (1648 lines) | stat: -rw-r--r-- 35,712 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
; Altirra BASIC - Function module
; Copyright (C) 2015 Avery Lee, All Rights Reserved.
;
; Copying and distribution of this file, with or without modification,
; are permitted in any medium without royalty provided the copyright
; notice and this notice are preserved.  This file is offered as-is,
; without any warranty.
;
;===========================================================================
; Function routine requirements
;
; Function routines are called from the evaluator as follows:
;
;	Entry:
;		X = function token
;		1,S = return address
;		3,S = saved operator
;		argstk = all but rightmost argument, 2nd rightmost on top
;		FR0 = top of stack (rightmost argument)
;		expType = expression type of rightmost argument
;
;	Exit:
;		argstk = all arguments removed
;		FR0 = result
;		expType = expression type of result
;
; For simple functions, FR0 simply needs to be transformed from the argument
; to the result.
;

?functions_start = *

;===========================================================================
.proc funStringCompare
_str0 = fr0
_str1 = fr1

		;reset expression type back to numeric
		stx		expType

		lda		funCompare.compare_mode_tab-TOK_EXP_STR_LE,x
		sta		a3

		jsr		expPopFR1
		
		;compare lengths
		ldx		_str0+3
		cpx		_str1+3
		bne		compdone
		lda		_str0+2
		cmp		_str1+2
compdone:
		php
		pla
		sta		funScratch1
		
		ldy		#0
		bcc		start
		mva		_str1+2 _str0+2
		ldx		_str1+3
start:
		txa
		beq		loop2_start
loop:
		lda		(_str0),y
		cmp		(_str1),y
		bne		done
		iny
		bne		loop
		inc		_str0+1
		inc		_str1+1
		dex
		bne		loop
		beq		loop2_start
loop2:
		lda		(_str0),y
		cmp		(_str1),y
		bne		done
		iny
loop2_start:
		cpy		_str0+2
		bne		loop2

		lda		funScratch1
		pha
		plp
done:
		jmp		funCompare.push_flags_as_bool
.endp

;===========================================================================
; Parse floating point value from (INBUFF) starting at CIX into FR0.
;
; This routine is necessary to work around a bug in the Atari math pack
; where AFP can produce an illegal -0 value (80 00 00 00 00 00) that is
; not accepted by FASC. We detect zero by the second mantissa value and
; correct it to zero.
;
.proc MathParseFP
		jsr		afp
		lda		fr0+1
		beq		funCompare.push_0
		rts
.endp

;===========================================================================
.proc funCompare
		;save comparison mode
		lda		compare_mode_tab-TOK_EXP_LE,x
		sta		a3
		
		;pop first argument off
		jsr		expPopFR1

		;do FP comparison
		jsr		fcomp
		
push_flags_as_bool:
		;compute relational outputs for comparison result
		;(=, <>, <, >=, >, <=)
		;%010110		;fr1 > fr0
		;%001011		;fr1 < fr0
		;%100101		;fr1 = fr0
		beq		is_equal
		lda		#%10110
		bcc		is_gt
		lsr
        dta		{bit $0100}
is_equal:
		lda		#%100101
is_gt:		
		;select the desired relation
		and		a3
		
		;push and exit
push_nz_as_bool:
		bne		push_1
push_0:
		jmp		zfr0

.def :funNot
		lda		fr0+1
		bne		push_0

push_1:
.def :fld1
		ldx		#<const_one
.def :MathLoadConstFR0 = *
		ldy		#>const_table
		jmp		fld0r
		
compare_mode_tab:
		dta		$01,$02,$04,$08,$10,$20
.endp

;===========================================================================
.proc funOr
		jsr		expPopFR1
		bne		fld1
		beq		funAnd.push_fr0_bool
.endp

;===========================================================================
.proc funAnd
		jsr		expPopFR1
		beq		funCompare.push_0
push_fr0_bool:
		lda		fr0
		jmp		funCompare.push_nz_as_bool
.endp

;===========================================================================
; ^ operator (exponentiation)
;
; 0^0 = 1.
;
; Quirks (arguably bugs):
;	0^1E+80 -> Error 11
;	1^131072 = 2 with XL/XE OS, even though LOG/CLOG(1) = 0
;
; Errors:
;	Error 3 if x=0 and y<0
;	Error 11 if x<0 and y not integer
;	Error 11 if underflow/overflow
;
.proc funPower
_flags = funScratch1
_rneg = funScratch2

		;unfortunately, we have to futz with the stack here since the
		;parameters are in the wrong order....
		ldx		#6
push_loop:
		lda		fr0-1,x
		pha
		dex
		bne		push_loop
		stx		_rneg

		jsr		expPopFR0

		;check if x<0 and take abs(x) if so
		jsr		MathSplitSign

		;check if x=0 and cache nonzero flag
		cmp		#1
		ror		_flags
		bpl		x_zero

		;compute log(x)
		jsr		funClog

x_zero:
		;pop y
		ldx		#<-6
pop_loop:
		pla
		sta		fr1+6,x
		inx
		bne		pop_loop

		;if y=0, always return 1
		lda		fr1
		beq		y_zero

		;check for x<=0
		asl		_flags
		bcc		x_zero2
		bpl		x_positive

		;x is negative... check if y is an integer
		;bias y and skip if it's too large to be odd or have a fraction
		sbc		#$c5
		bpl		y_large_integer

		;check if y>0 and y<1, which means it must be fractional
		cmp		#<-5
		bcc		funAdd.arith_error

		;load least significant integer byte and copy oddness to sign
		tax
		lda		fr1+6,x
		sta		_rneg

		;check for fraction
		bcs		y_fracstart

y_fracloop:
		lda		fr1+6,x
		bne		funAdd.arith_error
y_fracstart:
		inx
		bmi		y_fracloop		

y_large_integer:
x_positive:
y_zero:
		;compute log(x)*y
		jsr		MathMulChecked

		;compute exp(log(x)*y)
		jsr		exp10
		bcs		funAdd.arith_error

		;flip sign if x<0 and y odd
		lsr		_rneg
		bcs		funUnaryMinus
push_exit:
		rts

x_zero2:
		;x is zero, so fire error if y<0
		lda		fr1
		bmi		funAdd.arith_error

		;return zero
		rts
.endp

;===========================================================================
.proc funUnaryMinus
		;test for zero
		lda		fr0
		beq		done
		eor		#$80
		sta		fr0
done:
		rts
.endp

;===========================================================================
; * operator
;
; Errors:
;	Error 11 if underflow/overflow
;
.proc funMultiply
		jsr		expPopFR1
.def :MathMulChecked
		jsr		fmul
		jmp		funAdd.arith_exit
.endp


;===========================================================================
; - operator
;
; Errors:
;	Error 11 if overflow
;
;---------------------------------------------------------------------------
; + operator
;
; Errors:
;	Error 11 if overflow
;
funSubtract:
		jsr		funUnaryMinus
.proc funAdd
		jsr		expPopFR1
		jsr		fadd
arith_exit:
		bcc		funPower.push_exit
arith_error:
		jmp		errorFPError
.endp

;===========================================================================
; / operator
;
; Errors:
;	Error 11 if underflow/overflow/div0
;
.proc funDivide
		jsr		ExprFmoveAndPopFR0
		jsr		fdiv
		jmp		funAdd.arith_exit
.endp


;===========================================================================
; String assignment
;
; There is a really annoying case we have to deal with here:
;
;	READY
;	DIM A$(10)
;
;	READY
;	A$(5,8)="XY"
;
;	READY
;	PRINT LEN(A$)
;	6
;
; What this means is that the length of the string array is affected by
; both the subscript and the string assigned into it. Amusingly (or
; annoyingly), Atari BASIC also doesn't actually initialize the string in
; this case, resulting in four nulls at the beginning of the string.
;
; The rules for an assignment of length N to A$(X):
;	- Assignment begins at an offset of X-1 in the string buffer.
;	- The copy is truncated at the end of the string buffer.
;	- The string length is set to X-1+N, subject to capacity limits. This
;	  can both raise and lower the length. Basically, the string buffer is
;	  terminated at the end of the copied string.
;	- If the length is raised, no bytes prior to the assign point are
;	  initialized and can be junk (typically hearts or existing data).
;
; The rules for an assignment of length N to A$(X,Y):
;	- Assignment begins at an offset of X-1 in the string buffer.
;	- The copy is truncated at the end of the string buffer.
;	- The copy is truncated at a max length of Y-X+1.
;	- The string length is raised to min(X-1+N, Y). The length is never
;	  lowered. This means that the two-subscript form cannot ever truncate
;	  a string.
;	- If the copy length is shorter than the range, the extra chars in
;	  the buffer are untouched.
;	- If the length is raised, no bytes prior to the assign point are
;	  initialized and can be junk (typically hearts or existing data).
;
.proc funAssignStr
		;pop source string to FR1
		;pop dest string to FR0
		jsr		ExprFmoveAndPopFR0
		
		;READ/INPUT comes in here
_read_entry:
		;##TRACE "Dest string: $%04x+%u [%u] = [%.*s]" dw(fr0) dw(fr0+2) dw(fr0+4) dw(fr0+2) dw(fr0)
		;##TRACE "Source string: $%04x+%u [%u] = [%.*s]" dw(fr1) dw(fr1+2) dw(fr1+4) dw(fr1+2) dw(fr1)

		;check if we need to truncate length (len(src) > capacity(dst))
		;;##TRACE "source length %x" dw(fr1+2)
		;;##TRACE "dest capacity %x" dw(fr0+4)
		ldx		fr1+3			;get source length hi
		lda		fr1+2			;get source length lo
		cpx		fr0+5			;compare dest capacity hi
		sne:cmp	fr0+4			;compare dest capacity lo
		bcc		len_ok
		;source string is shorter, so use it
		;;##TRACE "Truncating length"
		ldx		fr0+5
		lda		fr0+4
len_ok:

		;set copy length (a3)
		sta		a3
		stx		a3+1
		
		;check if we need to alter the source length:
		; - for A$(X)=B$, the length is always set to min(X+len(B$)-1, capacity(A$))
		; - for A$(X,Y)=B$, this only happens if the new length is greater than the existing length
		
		;compute relative offset and add copy length
		;;##TRACE "Var is at %x, dest is at %x, copy len is %x, dest offset is %x" dw(starp)+dw(dw(varptr)+2) dw(fr0) dw(a3) dw(a3)+(dw(dw(varptr)+2)+dw(starp))-dw(fr0)
		sec
		lda		fr0
		sbc		starp
		tax
		lda		fr0+1
		sbc		starp+1
		tay
		
		clc
		txa
		adc		a3
		tax
		tya
		adc		a3+1
		pha
		
		ldy		#0
		sec
		txa
		sbc		(lvarptr),y
		tax
		iny
		pla
		sbc		(lvarptr),y
		sta		fr1+5
		
		;check if we are doing A$(X)=...
		bit		expAsnCtx
		bmi		update_length
		
		;check if the new length is longer than the existing length
		;##TRACE "Comparing var length: existing %u, proposed %u" dw(dw(varptr)+4) db(fr1+5)*256+x
		txa
		iny
		cmp		(lvarptr),y
		iny
		lda		fr1+5
		sbc		(lvarptr),y
		bcc		no_update_length
		
update_length:
		;##TRACE "Setting var length to %d" db(fr1+5)*256+x
		ldy		#3
		mva		fr1+5 (lvarptr),y
		dey
		txa
		sta		(lvarptr),y
no_update_length:

		;##TRACE "String assignment: copy ($%04x+%d -> $%04x)" dw(fr1) dw(a3) dw(a0)
		;##ASSERT dw(a0) >= dw(starp) and dw(a0)+dw(a3) <= dw(runstk)
		;copy source address to dest pointer (a1)
		ldy		fr1
		lda		fr1+1
		
		;do memcpy and we're done
.def :copyAscendingSrcAY
		sty		a1
		sta		a1+1

;==========================================================================
; Input:
;	A1	source start
;	A0	destination
;	A3	bytes to copy
;
; Modified:
;	A0, A1, A, X, Y
;
; Preserved:
;	A2
.def :copyAscending
		;##TRACE "Copy ascending src=$%04X, dst=$%04X (len=$%04X)" dw(a1) dw(a0) dw(a3)
		ldy		#0
		ldx		a3+1
		beq		do_leftovers
		
		;copy whole pages
copy_loop:
		lda		(a1),y
		sta		(a0),y
		iny
		bne		copy_loop
		inc		a1+1
		inc		a0+1
		dex
		bne		copy_loop
do_leftovers:

		;copy extra bits
		ldx		a3
		beq		leftovers_done
finish_loop:
		lda		(a1),y
		sta		(a0),y
		iny
		dex
		bne		finish_loop
		
leftovers_done:
		rts
.endp

;===========================================================================
.proc funArrayComma
		inc		expCommas
.def :funUnaryPlus = *
.def :expComma = *
		rts
.endp

;===========================================================================
; This is used for expressions of the form:
;
;	A$(start)
;	A$(start, end)
;
; Both start and end are 1-based and the end is inclusive. Error 5 results
; if start is 0, end is less than start, or end is beyond the end of the
; string (length for rvalue, capacity for lvalue).
;
; What makes this operator tricky to handle is determining whether the
; subscripts should be checked against the current or max string length:
;
;	DIM A$(10)
;	A$="XYZ"
;	A$(LEN(A$(1,2))+4)="AB"
;
; As can be seen above, it is possible for both lvalue and rvalue contexts
; to occur in the same expression. We detect an lvalue context by the
; global assignment flag and whether we're at the bottom of the eval stack;
; once we are on the right side of the assignment, the eval stack will have
; the lvalue at the bottom and therefore everything else must be in rvalue
; context.
;
; Annoyingly, if we're in an assignment, we can't update the string
; length yet as it depends on the length of the string assigned. 
;
.proc funArrayStr
		;check for a second subscript
		lda		expCommas
		beq		no_second
		
		;convert second subscript to int and move into place
		jsr		ExprConvFR0IntPos
		
		;##TRACE "String subscript 2 = %d" dw(fr0)
		stx		fr1+4
		sta		fr1+5
		jsr		ExprPopExtFR0
no_second:
		;convert first subscript to int and subtract 1 to convert 1-based
		;to 0-based indexing
		jsr		ExprConvFR0IntPos
		
		;##TRACE "String subscript 1 = %d" dw(fr0)
		tay
		txa
		bne		sub1_ok
		dey
		;first subscript can't be zero since it's 1-based
		bmi		bad_subscript
sub1_ok:
		dex

		stx		fr1+2
		sty		fr1+3
		
		;pop off the array variable
		jsr		ExprPopExtFR0
		
		;##TRACE "String var: adr=$%04x, len=%d, capacity=%d" dw(fr0) dw(fr0+2) dw(fr0+4)

		;determine whether we should use the length or the capacity to
		;bounds check
		ldx		#3					;use length
		cpx		argsp				;bottom of stack?
		bne		use_length			;nope, can't be root assignment... use length
		lda		expAsnCtx			;in assignment context?
		beq		use_length			;nope, use length
		ldx		#5					;use capacity
		lda		expCommas
		seq:asl	expAsnCtx			;clear assignment flag for A$(x,y) so = doesn't set length
use_length:
		
		;check if we had a second subscript
		lda		expCommas

		;copy limit to second subscript if not
		beq		use_limit_as_end

		;we do - bounds check it against the limit (require y <= limit,
		;or limit - y >= 0).
		lda		fr0-1,x
		cmp		fr1+4
		lda		fr0,x
		sbc		fr1+5
		bcs		second_ok
bad_subscript:
		jmp		errorStringLength

second_ok:
		;use second subscript
		ldx		#fr1+5-fr0
use_limit_as_end:
		;check the second subscript against the first subscript: A$(x,y) requires x <= y,
		;or y - x >= 0. However, we've decremented x, so this needs to be y - (x+1) >= 0
		;or y - x - 1 >= 0.
		lda		fr0-1,x
		sta		fr0+4				;copy to capacity lo
		clc
		sbc		fr1+2
		lda		fr0,x
		sta		fr0+5				;copy to capacity hi
		sbc		fr1+3
		bcc		bad_subscript
		
		;Merge subscripts back into string descriptor:
		; - offset address by X
		; - decrease length by X
		; - decrease capacity by X
		;
		;##ASSERT dw(fr1+2) < dw(fr0+4)
		;##ASSERT dw(fr1+4) <= dw(fr0+4)

		;address += start
		ldy		#fr1+2
		sty		expType				;!! - set expression type to string!
		jsr		IntAddToFR0

		;capacity -= start
		;length -= start
		ldx		#$7c
offset_loop:
		sec
		lda		fr0+2-$7c,x
		sbc		fr1+2
		sta		fr0+2-$7c,x
		tay
		lda		fr0+3-$7c,x
		sbc		fr1+3
		sta		fr0+3-$7c,x
		inx
		inx
		bpl		offset_loop
		
		;limit length against capacity
		cpy		fr0+2
		tax
		sbc		fr0+3
		bcs		length_ok
		sty		fr0+2
		stx		fr0+3
length_ok:
		
		;push subscripted result back onto eval stack
		;##TRACE "Pushing substring: var %02X address $%04X length $%04X capacity $%04X" db(prefr0+1) dw(fr0) dw(fr0+2) dw(fr0+4)
		
		;all done - do standard open parens processing
		jmp		funOpenParens
.endp

;===========================================================================
; Numeric array indexing
;
;	A(aexp)
;	A(aexp,aexp)
;
; Errors:
;	Error 9 if either bound is out of bounds
;
; Numeric arrays are indexed from 0..N where N is the bound from the DIM
; statement. If the second index is omitted, it is assumed to be 0. 1D/2D
; indexing may be used with either 1D/2D DIM'd arrays. The first index is
; the lower order index, so the offset for A(X,Y) for DIM A(N,M) is
; X+Y*(N+1).
;
.proc funArrayNum
		;check if we have two subscripts and clear sub2 if not
		lda		expCommas
		beq		one_dim
		
		;load second subscript
		jsr		ExprConvFR0Int
		stx		fr0+4
		sta		fr0+5
		
		;bounds check against second array size (offset 2, one level up)
		lda		argsp
		sec
		sbc		#4
		tay
		txa
		sbc		(argstk),y
		lda		fr0+1
		sbc		(argstk2),y
		bcs		invalid_bound
		
bound2_ok:
		;multiply by first array size
		dey
		lda		(argstk2),y
		sta		fr0+3
		lda		(argstk),y
		sta		fr0+2
		jsr		umul16x16
		jsr		ExprFmoveAndPopFR0
		
one_dim:
		jsr		ExprConvFR0Int
		
		;bounds check against first array size
		ldy		argsp
		dey
		dey
		txa
		cmp		(argstk),y
		lda		fr0+1
		sbc		(argstk2),y
		dey
		sty		argsp
		bcs		invalid_bound
		
		;add in second index offset, if there is one
		lda		expCommas
		beq		skip_add_dim2
		ldy		#fr1
		jsr		IntAddToFR0
skip_add_dim2:
				
		;multiply by 6
		jsr		umul16_6		;!! - relying on this leaving C=0 for below
		
		;add address of array (stack always has abs)
		ldy		argsp
		;##TRACE "Doing array indexing: offset=$%04x, array=$%02x%02x, argsp=$%02x" dw(fr0) db(dw(argstk)+y-3) db(dw(argstk2)+y-3) y
		lda		(argstk),y
		adc		fr0
		sta		varptr
		tax
		lda		(argstk2),y
		adc		fr0+1
		sta		varptr+1
		
		;check if this is the first entry on the arg stack -- if so,
		;stash off the element address for possible assignment
		cpy		#3
		bne		not_first
		
		;##TRACE "Array element pointer: %04x" dw(fr1)
		sta		lvarptr+1
		stx		lvarptr
		
not_first:
		;load variable to fr0
		ldy		#0
		jsr		VarLoadFR0_OffsetY
		
		;all done - do standard open parens processing
.def :funOpenParens = *
		;reset comma count
		lda		expCommas
		sta		expFCommas
		ldy		#0

		;pop the return address + curop and force next token to be processed --
		;this prevents any further reduction and the close parens from
		;shifting onto the stack.
		pla
		pla
		pla
		jmp		evaluate.loop_open_parens

invalid_bound:
dim_error:
		;index out of bound -- issue dim error
		jmp		errorDimError
.endp

;===========================================================================
; DIM avar(M)
; DIM avar(M,N)
;
; Sets dimensions for a numeric array variable.
;
; Atari BASIC throws an error 9 if the array size exceeds 32K-1 bytes. We
; lift that limitation here (there's no good reason for it).
;
; Errors:
;	Error 9 if M=0 or N=0
;	Error 9 if out of memory
;	Error 3 if M/N outside of [0, 65535]
;
.proc funDimArray
		jsr		ExprConvFR0Int
		ldy		expCommas
		sty		fr1
		sty		fr1+1
		beq		one_dim
		jsr		fmove
		jsr		expPopFR0Int
one_dim:
		tay
		inx
		stx		fr0+2
		sne:iny

		lda		fr1
		clc
		adc		#1
		tax
		lda		#0
		adc		fr1+1
		sta		fr0+5

		;check if var is already dimensioned
		;store new address, length, and dimension
		jsr		set_array_offset
				
		;compute array size
		jsr		umul16x16
		bcs		funArrayNum.dim_error

		;expandTable will check for OOM, but we need to make sure we
		;don't wrap here. Max memory is [$0700,$9FFF] or $98FF bytes.
		;$98FF/6 = $197F. Highest safe multiplicand for x6 below is
		;$FFFF/6 = $2AAA. umul16x16 leaves the high byte in A, so
		;we just need to check it.
		cmp		#$1A
		bcs		funArrayNum.dim_error

		jsr		umul16_6
		
		;##TRACE "Allocating %u bytes" dw(fr0)
				
		;allocate space
		tay
		lda		fr0
allocate_and_exit:
		mwx		runstk a0
		ldx		#runstk
		jsr		expandTable

		;mark dimensioned
		ldy		#$fe
		dec		lvarptr+1
		lda		(lvarptr),y
		ora		#$01
		sta		(lvarptr),y

		;all done
		jmp		funOpenParens
.endp

;===========================================================================
.proc funDimStr
		;pop string length
		jsr		ExprConvFR0IntPos

		;move to capacity location (fr0+4)
		;throw dim error if it is zero
		sta		fr0+5		
		ora		fr0
		beq		funArrayNum.dim_error

		ldy		#0
		sty		fr0+2

		;check if var is already dimensioned
		;store new address, length, and dimension
		jsr		set_array_offset
		
		;allocate memory, relocate runtime stack and exit
		lda		fr0+4
		ldy		fr0+5
		jmp		funDimArray.allocate_and_exit
.endp

;===========================================================================
.proc set_array_offset
		sty		fr0+3
		stx		fr0+4

		;check if the array is already dimensioned, but do NOT mark it
		;yet -- we need to allocate the space before that
		ldy		#3
		lda		(argstk2),y				;high byte of pushed array pointer
		beq		funArrayNum.dim_error

		lda		runstk
		sub		starp
		sta		fr0
		lda		runstk+1
		sbc		starp+1
		sta		fr0+1

.def :funAssignNum = *
		;copy FR0 to variable or array element
		;;##TRACE "Assigning %g to element at $%04x" fr0 dw(lvarptr)
		ldy		#5
copy_loop:
		mva		fr0,y (lvarptr),y
		dey
		bpl		copy_loop

		;since this is an assignment, the stack must be empty afterward...
		;but we don't care about the state of the stack.
		rts
.endp

;===========================================================================
.proc funHex
		;convert string to hex at LBUFF
		clc
		jsr		IoConvNumToHex

		;push string onto stack
		bne		funStr.push_lbuff
.endp

;===========================================================================
.proc funStr
		;convert TOS to string
		jsr		fasc
		
		;determine length of string and fix last char
		ldy		#$ff
lenloop:
		iny
		lda		(inbuff),y
		bpl		lenloop
		eor		#$80
		sta		(inbuff),y
		iny
		
push_lbuff:
		;push string onto stack
		lda		inbuff
		bne		funChr.finish_str_entry_lbuffhi
.endp


;===========================================================================
; CHR$(aexp)
;
; Returns a single character string containing the character with the given
; value.
;
; Quirks:
; - Atari BASIC only uses a single buffer for the result of this function,
;   so using it more than once in an expression such that the results
;   overlap results in erroneous results. This can only occur with string
;   comparisons, which is why the manual warns against doing so. However,
;   CHR$() and STR$() can occur together, so they must use different
;   buffers. We don't have control over the STR$() position since FASC sets
;   INBUFF, so we offset our location here instead.
;
.proc funChr
		jsr		ExprConvFR0Int
		stx		lbuff+$40
		
		;push string onto stack
		lda		#<[lbuff+$40]
		ldy		#1
finish_str_entry_lbuffhi:
		ldx		#>[lbuff+$40]
		sta		fr0
		stx		fr0+1
		sty		fr0+2
		ldx		#0
		stx		fr0+3
		dex
		stx		expType
		rts		
.endp


;===========================================================================
; USR(aexp [,aexp...])
;
; Errors:
;	Error 3 if any values not in [0,65535]
;
.proc funUsr
usrArgCnt = funScratch1

		;copy off arg count
		;##TRACE "Dispatching user routine at %g with %u arguments" dw(argstk)+db(argsp)-8*db(expFCommas)+2 db(expFCommas)
		mva		expFCommas usrArgCnt

		;convert next argument (or address) to int
		jsr		ExprConvFR0Int

		;establish return address for user function
		jsr		arg_loop_start

		;push result back onto stack and return
		jmp		ifp
		
arg_loop:
		;arguments on eval stack to words on native stack
		;(!!) For some reason, Atari BASIC pushes these on in reverse order!
		txa
		pha
		lda		fr0+1
		pha
		jsr		expPopFR0Int
arg_loop_start:
		dec		expFCommas
		bpl		arg_loop
		
		;push arg count onto stack
		lda		usrArgCnt
		pha

		;dispatch
		jmp		(fr0)
.endp

;===========================================================================
; PADDLE(aexp)
;
; Returns the rotational position of the given paddle controller, from 0-7.
;
; Errors:
;	3 - if aexp<0 or aexp>255
;
; Quirks:
;	Invalid paddle numbers 8-255 aren't trapped and return data from
;	other parts of the OS database.
;
.proc funPaddleStick
		lda		offset_table-$51,x
		pha
		jsr		ExprConvFR0IntPos
		lda		#2
		sta		fr0+1
		pla
		tay
		bcc		funPeek.push_fr0_y		;!! - unconditional

offset_table:
		dta		<paddl0
		dta		<stick0
		dta		<ptrig0
		dta		<strig0
.endp

;===========================================================================
; PEEK(aexp)
;
; Returns the byte at the given location.
;
; Errors:
;	Error 3 if value not in [0,65536)
;
;---------------------------------------------------------------------------
; ASC(sexp)
;
; Returns the character value of the first character of a string as a
; number.
;
; Quirks:
;	- Atari BASIC does not check whether the string is empty and returns
;	  garbage instead.
;
.proc funPeek
		jsr		ExprConvFR0Int
.def :funAsc = *
		ldy		#0
		sty		expType
push_fr0_y:
		ldx		#0
		beq		funDpeek.peek_cont
.endp

;===========================================================================
; DPEEK(aexp)
;
; Returns the word at the given location.
;
; Errors:
;	Error 3 if value not in [0,65536)
;
.proc funDpeek
		jsr		ExprConvFR0Int
		ldy		#1
		lda		(fr0),y
		tax
		dey
peek_cont:
		lda		(fr0),y
		jmp		MathWordToFP
.endp0

;===========================================================================
; VAL(sexp)
;
; Converts a number at the beginning of a string to a numerical value
; according to AFP rules. Leading spaces are allowed; trailing characters
; are ignored.
;
; Examples:
;	VAL("") -> Error 18
;	VAL(" ") -> Error 18
;	VAL("0") -> 0
;	VAL(" 0") -> 0
;	VAL(" 0 ") -> 0
;	VAL("0 1") -> 0
;	VAL("1E+060") -> 1000000
;	A$="12345": VAL(A$(1,2)) -> 12		!! tricky case
;
.proc funVal
		mva		#0 cix
		sta		expType
		jsr		IoTerminateString
		jsr		MathParseFP
		jsr		IoUnterminateString
		bcc		funAtn.xit2
		jmp		errorInvalidString
.endp


;===========================================================================
; LEN(sexp)
;
; Returns the length in characters of a string expression.
;
;===========================================================================
; ADR(sexp)
;
; Returns the starting address of a string expression.
;
.proc funLen
		mwa		fr0+2 fr0
.def :funAdr = *
		lsr		expType
		jmp		ifp
.endp

;===========================================================================
; ATN(aexp)
;
; Returns the arctangent of aexp.
;
; If DEG has been issued, the result is returned in degrees instead of
; radians.
;
.proc funAtn
_sign = funScratch1
		;stash off sign and take abs
		jsr		MathSplitSign
		
		;check if |x| < 1; if so, use approximation directly
		asl
		bmi		is_big
		jsr		do_approx
		bcc		xit
		
is_big:
		;compute pi/2 - f(1/x)
		jsr		fmove
		jsr		fld1
		jsr		fdiv
		jsr		do_approx
		ldx		#<fpconst_pi2
		jsr		MathLoadConstFR1
		jsr		fsub
xit:
		lda		degflg
		beq		use_radians
		
		;convert radians to degrees
		ldx		#<fp_180_div_pi
		jsr		MathLoadConstFR1
		jsr		fmul
		
use_radians:
		;merge in sign
		asl		fr0
		asl		_sign
		ror		fr0
xit2:
		rts

do_approx:
		;save x
		jsr		MathStoreFR0_FPSCR

		;compute z = x*x
		jsr		fmove
		jsr		fmul
		
		;compute f(x^2)
		ldx		#<fpconst_atncoef
		ldy		#>fpconst_atncoef
		lda		#11

plyevl_mul_fpscr:
		jsr		plyevl
		
		;compute x*f(x^2)
		jsr		MathLoadFR1_FPSCR
		jmp		fmul
.endp


;===========================================================================
.proc funCos
_cosFlag = funScratch1
_quadrant = funScratch2

		ldx		#1
		dta		{bit $0100}

.def :funSin = *
		ldx		#0

		;save sincos flag
		stx		_cosFlag

		;convert from radians/degrees to quarter-angle binary fraction
		;FMUL would be faster, but we use FDIV for better accuracy for
		;quarter angles
		lda		#<angle_conv_tab
		clc
		adc		degflg
		tax
		jsr		MathLoadConstFR1
		jsr		fdiv
		
		;stash and then floor
		jsr		MathStoreFR0_FPSCR

		jsr		MathFloor
		
		;find the appropriate mantissa byte to identify which
		;quadrant we are in
		lda		fr0
		and		#$7f
		tax
		lda		#$00
		cpx		#$40				;check if |z| < 1.0
		bcc		is_tiny_or_big		;can't be odd if it is this small
		cpx		#$45				;check if |z| >= 10^10
		bcs		is_tiny_or_big		;can't be odd if it is this big
		lda		fr0-$3f,x			;load mantissa byte
is_tiny_or_big:

		;reduce to quadrant -- note that we are in BCD, so we need to
		;XOR bit 4 and bit 1 together
		and		#$1f
		cmp		#$10
		scc:adc	#$01				;!! - C=1; also clears carry for below
		
		;modify for negative and cosine if needed
		bit		fr0
		bpl		is_positive
		eor		#3
		sec
is_positive:
		adc		_cosFlag
		sta		_quadrant

		;now compute fraction
		jsr		MathLoadFR1_FPSCR
		jsr		fsub
		
		;now we are doing only sin() -- check if we need to compute
		;f(1-x) for quadrants II and IV
		lsr		_quadrant
		bcc		odd_quadrant
		
		jsr		MathLoadOneFR1
		jsr		fadd
odd_quadrant:

		;take abs() of FR0 since depending on quadrant we would have
		;computed either -z or 1-z above
		jsr		funAbs				;!! - this also stomps funScratch1 (_cosFlag)
		
		;stash z
		jsr		MathStoreFR0_FPSCR
		
		;compute z^2
		jsr		fmove
		jsr		fmul
		
		;do polynomial expansion y' = z*f(z^2)
		ldx		#<fpconst_sin
		ldy		#>fpconst_sin
		lda		#6
		jsr		funAtn.plyevl_mul_fpscr
				
		;negate result if we are in quadrants III or IV
		lsr		_quadrant
		bcc		skip_quadrant_negation
		jsr		funUnaryMinus
		
skip_quadrant_negation:
		;clamp to +/-1.0
		bit		fr0
		bvc		abs_below_one
		lda		#0
		sta		fr0+5

		;push result and exit
abs_below_one:
		rts
.endp


;===========================================================================
.proc funRnd
_temp = fr0+6
_temp2 = fr0+7
		ldx		#5
		lda		#$3f		;2
		sta		fr0			;3
loop:
		;keep looping until we get a valid BCD number
loop2:
		lda		random		;4
		cmp		#$a0		;2
		bcs		loop2		;2
		sta		fr0,x		;4
		and		#$0f		;2
		cmp		#$0a		;2
		bcs		loop2		;2
		
		;continue until we have 5 digits
		dex					;2
		bne		loop		;3   total = 23 cycles
		
		;renormalize random value and exit
		jmp		normalize
.endp


;===========================================================================
; FRE(aexp)
;
; Returns the number of free bytes available. This is defined as the
; difference between the top of the runtime stack (BASIC MEMTOP) and OS
; MEMTOP.
;
; Quirks:
;	The returned value is actually off by one as OS MEMTOP is inclusive.
;
.proc funFre
		lda		memtop
		sub		memtop2
		tay
		lda		memtop+1
		sbc		memtop2+1
		tax
		tya
		jmp		MathWordToFP
.endp

;===========================================================================
; EXP(aexp)
;
; Errors:
;	Error 3 if underflow/overflow
;
;---------------------------------------------------------------------------
; LOG(aexp)
;
; Errors:
;	Error 3 if underflow/overflow
;
.proc funLog
		jsr		log
test_exit:
		bcs		err
ok:
		rts
.def :funExp
		jsr		exp
		bcc		ok
err:
		jmp		errorValueErr
.endp


;===========================================================================
; EXP(aexp)
;
; Errors:
;	Error 3 if underflow/overflow
;
.proc funClog
		jsr		log10
		jmp		funLog.test_exit
.endp


;===========================================================================
; SQR(aexpr)
;
; Returns the square root of aexpr.
;
; If aexpr is negative, Error 3 is returned.
;
; The traditional way of implementing a square root is to use an iterative
; approximation to the reciprocal square root and then compute x*rsqrt(x).
; We don't use that method here as the base 100 representation makes it
; harder to get a good initial guess and it requires about 6-7 iterations
; to converge to 10 digits.
;
; Because division is about the same speed as multiplication in the Atari
; math pack, we use the Babylonian method instead, which has fewer
; multiply/divide operations:
;
;	x' = (x + (S/x))/2
;
; To ensure fast convergence, we first reduce the range of the mantissa
; to between 0.10 and 1.00. In this way, we can get to 10 sig digits in
; four iterations.
;
; TICKTOCK.BAS is sensitive to errors here.
;
.proc funSqr
_itercount = funScratch1		
		;stash original value
		jsr		MathStoreFR0_FPSCR

		;check if arg is zero
		lda		fr0
		beq		done
		
		;error out if negative
		bmi		funLog.err

		;rebias exponent
		clc
		adc		#$40					;!! - also clears carry for loop below
		sta		fr0
		
		;compute a good initial guess
		ldx		#9
		stx		_itercount				;!! - set 4 iterations (by asl)
		lda		#$00
guess_loop:
		adc		#$11
		dex
		ldy		approx_compare_tab,x
		cpy		fr0+1
		bcc		guess_loop
guess_ok
		
		;divide exponent by two and check if we need to
		;multiply by ten
		lsr		fr0
		bcs		no_tens
		
		and		#$0f
no_tens:
		sta		fr0+1
				
iter_loop:
		;FR1 = x
		jsr		fmove
		
		;PLYARG = x
		ldx		#<plyarg
		jsr		MathStoreFR0_Page5
		
		;compute S/x
		ldx		#<fpscr
		ldy		#>fpscr
		jsr		fld0r
		jsr		fdiv
		
		;compute S/x + x
		ldx		#<plyarg
		jsr		MathLoadFR1_Page5
		jsr		fadd
		
		;divide by two
		ldx		#<fpconst_half
		ldy		#>fpconst_half
		jsr		fld1r
		jsr		fmul
		
		;loop back until iterations completed
		asl		_itercount
		bpl		iter_loop
		
done:
		rts
		
approx_compare_tab:
		dta		$ff,$87,$66,$55,$36,$24,$14,$07,$02
.endp


;===========================================================================
; SGN(aexp)
;
; Returns the sign of a number, as -1/0/+1.
;
.nowarn .proc _funHVStick
.def :funHstick
.def :funVstick
		cpx		#TOK_EXP_VSTICK
		php
		jsr		ExprConvFR0IntPos
		lda		stick0,x
		pha
		jsr		zfr0
		pla
		plp
		beq		vstick
		lsr
		lsr
		eor		#$03
vstick:
		and		#$03
		tax
		lda		hvstick_table,x
		sta		fr0
.endp
		;!! - fall through
.proc funSgn
		;check if the number is zero
		asl		fr0
		beq		is_zero
		
		;convert to +/-1
		lda		#$80
		ror
		pha
		jsr		fld1
		pla
		sta		fr0
is_zero:
		rts
.endp


;===========================================================================
funAbs = MathSplitSign

;===========================================================================
; This is really floor().
funInt = MathFloor		

;===========================================================================
.proc funBitwiseSetup
		jsr		ExprConvFR0Int
		jsr		fmove
		jmp		expPopFR0Int		;!! - exits with carry clear (or else error would have occurred)
.endp

.proc funBitwiseAnd
		jsr		funBitwiseSetup
		and		fr1+1
		tay
		txa
		and		fr1
finish:
		sty		fr0+1
		jmp		MathWordToFP_FR0Hi_A
.endp

.proc funBitwiseOr
		jsr		funBitwiseSetup
		ora		fr1+1
		tay
		txa
		ora		fr1
		bcc		funBitwiseAnd.finish	;!! - unconditional
.endp

.proc funBitwiseXor
		jsr		funBitwiseSetup
		eor		fr1+1
		tay
		txa
		eor		fr1
		bcc		funBitwiseAnd.finish	;!! - unconditional
.endp

;===========================================================================
.proc funErr
		lda		stopln

		;check if we want 0 (number) or 1 (line)
		ldx		fr0
		beq		get_errno

		ldx		stopln+1
		dta		{bit $0100}		;bit $C3xx
get_errno:
		lda		errsave
		jmp		MathWordToFP
.endp

;===========================================================================
.proc funPmadr
		jsr		ExprConvFR0Int
		jsr		pmGetAddrX
		tax
		lda		parptr
		jmp		MathWordToFP
.endp

;===========================================================================
; BUMP(aexp, aexp)
;
.proc funBump
		;fetch bit index and player/playfield flag
		jsr		funBitwiseSetup
		lda		fr1
		and		#8

		;fetch player/missile index
		eor		#12
		eor		fr0
		tay
		lda		fr1
		and		#3
		tax
		lda		funCompare.compare_mode_tab,x
		and		m0pf,y
		jsr		funCompare.push_nz_as_bool
		jmp		funOpenParens
.endp

;===========================================================================
.echo "- Function module length: ",*-?statements_start