1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
/* ---------------------------------------------------------------------
*
* -- Automatically Tuned Linear Algebra Software (ATLAS)
* (C) Copyright 2000 All Rights Reserved
*
* -- ATLAS routine -- Version 3.9.24 -- December 25, 2000
*
* Author : Antoine P. Petitet
* Originally developed at the University of Tennessee,
* Innovative Computing Laboratory, Knoxville TN, 37996-1301, USA.
*
* ---------------------------------------------------------------------
*
* -- Copyright notice and Licensing terms:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions, and the following disclaimer in
* the documentation and/or other materials provided with the distri-
* bution.
* 3. The name of the University, the ATLAS group, or the names of its
* contributors may not be used to endorse or promote products deri-
* ved from this software without specific written permission.
*
* -- Disclaimer:
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY
* OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
* CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEO-
* RY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (IN-
* CLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ---------------------------------------------------------------------
*/
#ifndef ATL_REFMISC_H
#define ATL_REFMISC_H
/*
* =====================================================================
* Include files
* =====================================================================
*/
#include <math.h>
#include "atlas_enum.h"
/*
* =====================================================================
* #define macro constants
* =====================================================================
*/
#define ATL_sNONE (-1.0f)
#define ATL_sNTWO (-2.0f)
#define ATL_sONE ( 1.0f)
#define ATL_sZERO ( 0.0f)
#define ATL_dNONE (-1.0)
#define ATL_dNTWO (-2.0)
#define ATL_dONE ( 1.0)
#define ATL_dZERO ( 0.0)
/*
* =====================================================================
* # macro functions
* =====================================================================
*/
#define Msabs( a_ ) ( ( (a_) < ATL_sZERO ) ? -(a_) : (a_) )
#define Mszero( a_r_, a_i_ ) \
( ( (a_r_) == ATL_sZERO ) && ( (a_i_) == ATL_sZERO ) )
#define Msone( a_r_, a_i_ ) \
( ( (a_r_) == ATL_sONE ) && ( (a_i_) == ATL_sZERO ) )
#define Msscl( a_r_, a_i_, c_r_, c_i_ ) \
{ \
register float tmp_r_, tmp_i_; \
tmp_r_ = (a_r_) * c_r_ - (a_i_) * c_i_; \
tmp_i_ = (a_r_) * c_i_ + (a_i_) * c_r_; \
c_r_ = tmp_r_; \
c_i_ = tmp_i_; \
}
/*
* Msdiv performs complex division in real arithmetic
* a_r_ + i * a_i_ = ( a_r_ + i * a_i_ ) / ( b_r_ + i * b_i_ );
* The algorithm is due to Robert L. Smith and can be found in D. Knuth,
* The art of Computer Programming, Vol.2, p.195
*/
#define Msdiv( b_r_, b_i_, a_r_, a_i_ ) \
{ \
register float c_i_, c_r_, tmp1_, tmp2_; \
if( Msabs( b_i_ ) < Msabs( b_r_ ) ) \
{ \
tmp1_ = (b_i_) / (b_r_); \
tmp2_ = (b_r_) + (b_i_) * tmp1_; \
c_r_ = ( (a_r_) + (a_i_) * tmp1_ ) / tmp2_; \
c_i_ = ( (a_i_) - (a_r_) * tmp1_ ) / tmp2_; \
} \
else \
{ \
tmp1_ = (b_r_) / (b_i_); \
tmp2_ = (b_i_) + (b_r_) * tmp1_; \
c_r_ = ( (a_i_) + (a_r_) * tmp1_ ) / tmp2_; \
c_i_ = ( -(a_r_) + (a_i_) * tmp1_ ) / tmp2_; \
} \
a_r_ = c_r_; \
a_i_ = c_i_; \
}
#define Mdabs( a_ ) ( ( (a_) < ATL_dZERO ) ? -(a_) : (a_) )
#define Mdzero( a_r_, a_i_ ) \
( ( (a_r_) == ATL_dZERO ) && ( (a_i_) == ATL_dZERO ) )
#define Mdone( a_r_, a_i_ ) \
( ( (a_r_) == ATL_dONE ) && ( (a_i_) == ATL_dZERO ) )
#define Mdscl( a_r_, a_i_, c_r_, c_i_ ) \
{ \
register double tmp_r_, tmp_i_; \
tmp_r_ = (a_r_) * c_r_ - (a_i_) * c_i_; \
tmp_i_ = (a_r_) * c_i_ + (a_i_) * c_r_; \
c_r_ = tmp_r_; \
c_i_ = tmp_i_; \
}
/*
* Mddiv performs complex division in real arithmetic
* a_r_ + i * a_i_ = ( a_r_ + i * a_i_ ) / ( b_r_ + i * b_i_ );
* The algorithm is due to Robert L. Smith and can be found in D. Knuth,
* The art of Computer Programming, Vol.2, p.195
*/
#define Mddiv( b_r_, b_i_, a_r_, a_i_ ) \
{ \
register double c_i_, c_r_, tmp1_, tmp2_; \
if( Mdabs( b_i_ ) < Mdabs( b_r_ ) ) \
{ \
tmp1_ = (b_i_) / (b_r_); \
tmp2_ = (b_r_) + (b_i_) * tmp1_; \
c_r_ = ( (a_r_) + (a_i_) * tmp1_ ) / tmp2_; \
c_i_ = ( (a_i_) - (a_r_) * tmp1_ ) / tmp2_; \
} \
else \
{ \
tmp1_ = (b_r_) / (b_i_); \
tmp2_ = (b_i_) + (b_r_) * tmp1_; \
c_r_ = ( (a_i_) + (a_r_) * tmp1_ ) / tmp2_; \
c_i_ = ( -(a_r_) + (a_i_) * tmp1_ ) / tmp2_; \
} \
a_r_ = c_r_; \
a_i_ = c_i_; \
}
#define Mmin( a_, b_ ) ( ( (a_) < (b_) ) ? (a_) : (b_) )
#define Mmax( a_, b_ ) ( ( (a_) > (b_) ) ? (a_) : (b_) )
#define Mmul( a_r_, a_i_, b_r_, b_i_, c_r_, c_i_ ) \
{ \
c_r_ = (a_r_) * (b_r_) - (a_i_) * (b_i_); \
c_i_ = (a_r_) * (b_i_) + (a_i_) * (b_r_); \
}
#define Mmla( a_r_, a_i_, b_r_, b_i_, c_r_, c_i_ ) \
{ \
c_r_ += (a_r_) * (b_r_) - (a_i_) * (b_i_); \
c_i_ += (a_r_) * (b_i_) + (a_i_) * (b_r_); \
}
#define Mmls( a_r_, a_i_, b_r_, b_i_, c_r_, c_i_ ) \
{ \
c_r_ -= (a_r_) * (b_r_) - (a_i_) * (b_i_); \
c_i_ -= (a_r_) * (b_i_) + (a_i_) * (b_r_); \
}
#define Mset( a_r_, a_i_, b_r_, b_i_ ) \
{ \
b_r_ = (a_r_); \
b_i_ = (a_i_); \
}
#define Mselscal( al_, a_ ) \
{ \
if( (al_) == ATL_sZERO ) { (a_) = ATL_sZERO; } \
else if( (al_) != ATL_sONE ) { (a_) *= (al_); } \
}
#define Mdelscal( al_, a_ ) \
{ \
if( (al_) == ATL_dZERO ) { (a_) = ATL_dZERO; } \
else if( (al_) != ATL_dONE ) { (a_) *= (al_); } \
}
#define Mcelscal( al_r_, al_i_, a_r_, a_i_ ) \
{ \
if( Mszero( (al_r_), (al_i_) ) ) \
{ (a_r_) = (a_i_) = ATL_sZERO; } \
else if( ! Msone( (al_r_), (al_i_) ) ) \
{ Msscl( (al_r_), (al_i_), (a_r_), (a_i_) ); } \
}
#define Mzelscal( al_r_, al_i_, a_r_, a_i_ ) \
{ \
if( Mdzero( (al_r_), (al_i_) ) ) \
{ (a_r_) = (a_i_) = ATL_dZERO; } \
else if( ! Mdone( (al_r_), (al_i_) ) ) \
{ Mdscl( (al_r_), (al_i_), (a_r_), (a_i_) ); } \
}
#define Msvscal( n_, al_, x_, incx_ ) \
{ \
int i_, ix_; \
if( (al_) == ATL_sZERO ) \
{ \
for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx_) ) \
{ (x_)[ix_] = ATL_sZERO; } \
} \
else if( (al_) != ATL_sONE ) \
{ \
for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx_) ) \
{ (x_)[ix_] *= (al_); } \
} \
}
#define Mdvscal( n_, al_, x_, incx_ ) \
{ \
int i_, ix_; \
if( (al_) == ATL_dZERO ) \
{ \
for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx_) ) \
{ (x_)[ix_] = ATL_dZERO; } \
} \
else if( (al_) != ATL_dONE ) \
{ \
for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx_) ) \
{ (x_)[ix_] *= (al_); } \
} \
}
#define Mcvscal( n_, al_, x_, incx_ ) \
{ \
int i_, ix_, incx2_ = ( 2 * (incx_) ); \
if( Mszero( (al_)[0], (al_)[1] ) ) \
{ \
for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx2_) ) \
{ (x_)[ix_] = (x_)[ix_+1] = ATL_sZERO; } \
} \
else if( ! Msone( (al_)[0], (al_)[1] ) ) \
{ \
for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx2_) ) \
{ Msscl( (al_)[0], (al_)[1], (x_)[ix_], (x_)[ix_+1] ); } \
} \
}
#define Mzvscal( n_, al_, x_, incx_ ) \
{ \
int i_, ix_, incx2_ = ( 2 * (incx_) ); \
if( Mdzero( (al_)[0], (al_)[1] ) ) \
{ \
for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx2_) ) \
{ (x_)[ix_] = (x_)[ix_+1] = ATL_dZERO; } \
} \
else if( ! Mdone( (al_)[0], (al_)[1] ) ) \
{ \
for( i_ = 0, ix_ = 0; i_ < (n_); i_++, ix_ += (incx2_) ) \
{ Mdscl( (al_)[0], (al_)[1], (x_)[ix_], (x_)[ix_+1] ); } \
} \
}
#define Msgescal( m_, n_, al_, a_, lda_ ) \
{ \
int i_, iaij_, j_, jaj_; \
if( (al_) == ATL_sZERO ) \
{ \
for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += (lda_) ) \
{ \
for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 1 ) \
{ (a_)[iaij_] = ATL_sZERO; } \
} \
} \
else if( (al_) != ATL_sONE ) \
{ \
for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += (lda_) ) \
{ \
for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 1 ) \
{ (a_)[iaij_] *= (al_); } \
} \
} \
}
#define Mdgescal( m_, n_, al_, a_, lda_ ) \
{ \
int i_, iaij_, j_, jaj_; \
if( (al_) == ATL_dZERO ) \
{ \
for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += (lda_) ) \
{ \
for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 1 ) \
{ (a_)[iaij_] = ATL_dZERO; } \
} \
} \
else if( (al_) != ATL_dONE ) \
{ \
for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += (lda_) ) \
{ \
for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 1 ) \
{ (a_)[iaij_] *= (al_); } \
} \
} \
}
#define Mcgescal( m_, n_, al_, a_, lda_ ) \
{ \
int i_, iaij_, j_, jaj_, lda2_ = ( (lda_) << 1 ); \
if( Mszero( (al_)[0], (al_)[1] ) ) \
{ \
for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += lda2_ ) \
{ \
for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 2 ) \
{ (a_)[iaij_] = (a_)[iaij_+1] = ATL_sZERO; } \
} \
} \
else if( ! Msone( (al_)[0], (al_)[1] ) ) \
{ \
for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += lda2_ ) \
{ \
for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 2 ) \
{ \
Msscl( (al_)[0], (al_)[1], (a_)[iaij_], (a_)[iaij_+1] ); \
} \
} \
} \
}
#define Mzgescal( m_, n_, al_, a_, lda_ ) \
{ \
int i_, iaij_, j_, jaj_, lda2_ = ( (lda_) << 1 ); \
if( Mdzero( (al_)[0], (al_)[1] ) ) \
{ \
for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += lda2_ ) \
{ \
for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 2 ) \
{ (a_)[iaij_] = (a_)[iaij_+1] = ATL_dZERO; } \
} \
} \
else if( ! Mdone( (al_)[0], (al_)[1] ) ) \
{ \
for( j_ = 0, jaj_ = 0; j_ < (n_); j_++, jaj_ += lda2_ ) \
{ \
for( i_ = 0, iaij_ = jaj_; i_ < (m_); i_++, iaij_ += 2 ) \
{ \
Mdscl( (al_)[0], (al_)[1], (a_)[iaij_], (a_)[iaij_+1] ); \
} \
} \
} \
}
#endif
/*
* End of atlas_refmisc.h
*/
|