File: autodiff.dats

package info (click to toggle)
ats2-lang 0.1.3-1
  • links: PTS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 28,136 kB
  • ctags: 20,441
  • sloc: ansic: 354,696; makefile: 2,679; sh: 638
file content (696 lines) | stat: -rw-r--r-- 13,983 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
(*
**
** Automatic Differentiation
**
** The code is essentially translated fro
**
** Author: Hongwei Xi (hwxi AT cs DOT bu DOT edu)
** Time: January, 2008
**
*)

(* ****** ****** *)
//
// HX-2012-11-26: ported to ATS/Postiats
//
(* ****** ****** *)
//
// HX-2012-06-21: compiled to run with ATS/Postiats
//
(* ****** ****** *)
//
// HX-2012-06-21:
// By the current standard, the following code looks
// a bit ugly. However, it does shed some light on coding
// in ATS during its early development.
//
(* ****** ****** *)
//
#include
"share/atspre_staload.hats"
//
(* ****** ****** *)

staload M = "libc/SATS/math.sats"

(* ****** ****** *)

datatype dualnum =
  | Base of double
  | Bundle of (int, dualnum, dualnum)
// end of [dualnum]

(* ****** ****** *)

typedef
dualnumlst (n:int) = list (dualnum, n)
typedef dualnumlst = [n:nat] dualnumlst (n)
typedef dualnum1 = dualnumlst(1) and dualnum2 = dualnumlst(2)

(* ****** ****** *)

val _0: dualnum = Base (0.0)
val _1: dualnum = Base (1.0)
val _2: dualnum = Base (2.0)
val __1: dualnum = Base (~1.0)

(* ****** ****** *)

fn epsilon
  (p: dualnum): int =
(
  case+ p of Base _ => 0 | Bundle (e, _, _) => e
) // end of [epsilon]

fn primal
(
  e: int, p: dualnum
) : dualnum = case+ p of
  | Base _ => p | Bundle (e1, x, _) => if e1 < e then p else x
// end of [primal]

fn perturbe
(
  e: int, p: dualnum
) : dualnum = begin
  case+ p of
  | Base _ => _0
  | Bundle (e1, _, x') => if e1 < e then _0 else x'
end // end of [perturbe]

(* ****** ****** *)

local

val EPSILON = ref_make_elt<int> (0)

in (* in of [local] *)

fn derivative
(
  f: dualnum -<cloref1> dualnum, x: dualnum
) : dualnum = let
  val e = !EPSILON + 1
  val () = !EPSILON := e
  val result = perturbe (e, f (Bundle (e, x, _1)))
  val () = !EPSILON := e - 1
in
  result
end // end of [derivative]

end // end of [local]

(* ****** ****** *)

fun print_dualnum
  (p: dualnum): void =
(
case+ p of
| Bundle
    (_, x, _) => print_dualnum x
| Base (x) =>
    $extfcall (void, "printf", "%.18g", x)
) // end of [print_dualnum]
overload print with print_dualnum

fn print_dualnumlst
  (ps: dualnumlst): void = let
//
fun loop
(
  i: int, ps: dualnumlst
) : void =
(
case+ ps of
| list_cons (p, ps) =>
  (
    if i > 0 then print ", "; print_dualnum p; loop (i+1, ps)
  ) // end of [list_cons]
| list_nil ((*void*)) => ()
) (* end of [loop] *)
//
in
  loop (0, ps)
end // end of [print_dualnumlst]

(* ****** ****** *)

extern fun
neg_dualnum (p: dualnum): dualnum
extern fun
recip_dualnum (p: dualnum): dualnum
extern fun
add_dualnum_dualnum (p1: dualnum, p2: dualnum): dualnum
extern fun
sub_dualnum_dualnum (p1: dualnum, p2: dualnum): dualnum
extern fun
mul_dualnum_dualnum (p1: dualnum, p2: dualnum): dualnum
extern fun
div_dualnum_dualnum (p1: dualnum, p2: dualnum): dualnum

(* ****** ****** *)

overload ~ with neg_dualnum
overload + with add_dualnum_dualnum
overload - with sub_dualnum_dualnum
overload * with mul_dualnum_dualnum
overload / with div_dualnum_dualnum

(* ****** ****** *)

implement
neg_dualnum (p) =
(
case+ p of
| Bundle
    (e, x, x') => Bundle (e, ~x, ~x')
| Base (x) => Base (~x)
)
// end of [neg_dualnum]

(* ****** ****** *)

implement
add_dualnum_dualnum
  (p1, p2) = let
in
//
case+ p1 of
| Bundle (e1, x1, x1') => (
  case+ p2 of
  | Bundle
      (e2, x2, x2') => let
      val e = (if e1 <= e2 then e2 else e1): int
      val x = primal (e, p1) + primal (e, p2)
      val x' = perturbe (e, p1) + perturbe (e, p2)
    in
      Bundle (e, x, x')
    end
  | Base (x2) => Bundle (e1, x1 + p2, x1')
  ) // end of [Bundle]
| Base x1 => (
  case+ p2 of
  | Bundle
      (e2, x2, x2') => Bundle (e2, p1 + x2, x2')
  | Base (x2) => Base (x1 + x2)
  ) // end of [Base]
//
end // end of [add_dualnum_dualnum]

(* ****** ****** *)

implement
sub_dualnum_dualnum
  (p1, p2) = let
in
//
case+ p1 of
| Bundle
    (e1, x1, x1') => (
  case+ p2 of
  | Bundle
      (e2, x2, x2') => let
      val e = (if e1 <= e2 then e2 else e1): int
      val x = primal (e, p1) - primal (e, p2)
      val x' = perturbe (e, p1) - perturbe (e, p2)
    in
      Bundle (e, x, x')
    end
  | Base x2 => Bundle (e1, x1 - p2, x1')
  ) // end of [Bundle]
| Base (x1) => (
  case+ p2 of
  | Bundle
      (e2, x2, x2') => Bundle (e2, p1 - x2, ~x2')
  | Base x2 => Base (x1 - x2)
  ) // end of [Base]
//
end // end of [sub_dualnum_dualnum]

(* ****** ****** *)

implement
mul_dualnum_dualnum
  (p1, p2) = let
in
//
case+ p1 of
| Bundle (e1, x1, x1') => (
  case+ p2 of
  | Bundle
      (e2, x2, x2') => let
      val e = (if e1 <= e2 then e2 else e1): int
      val x1 = primal (e, p1) and x2 = primal (e, p2)
      val x = x1 * x2
      val x' = x1 * perturbe (e, p2) + x2 * perturbe (e, p1)
    in
      Bundle (e, x, x')
    end
  | Base (x2) => Bundle (e1, x1 * p2, p2 * x1')
  ) // end of [Bundle]
| Base x1 => (
  case+ p2 of
  | Bundle
      (e2, x2, x2') => Bundle (e2, p1 * x2, p1 * x2')
  | Base x2 => Base (x1 * x2)
  ) // end of [Base]
//
end // end of [mul_dualnum_dualnum]

(* ****** ****** *)

implement
recip_dualnum (p) =
(
case+ p of
| Bundle (e, x, x') =>
    Bundle (e, recip_dualnum x, (~x') / (x * x))
| Base x => Base (1.0 / x)
) // end of [recip_dualnum_dualnum]

implement
div_dualnum_dualnum (p1, p2) = p1 * (recip_dualnum p2)

(* ****** ****** *)

extern fun
sqrt_dualnum (p: dualnum): dualnum

implement
sqrt_dualnum (p) = let
in
//
case+ p of
| Bundle
    (e, x, x') => let
    val x_sqrt = sqrt_dualnum (x)
    val x'_sqrt = x' / (x_sqrt + x_sqrt)
  in
    Bundle (e, x_sqrt, x'_sqrt)
  end
| Base (x) => Base ($M.sqrt_double (x))
//
end // end of [sqrt_dualnum]

(* ****** ****** *)

extern fun
lt_dualnum_dualnum (p1: dualnum, p2: dualnum): bool
overload < with lt_dualnum_dualnum

implement
lt_dualnum_dualnum (p1, p2) = let
in
//
case+ p1 of
| Bundle (_, x1, _) => (
  case+ p2 of Bundle (_, x2, _) => x1 < x2 | Base x2 => x1 < p2
  )
| Base x1 => (
  case+ p2 of Bundle (_, x2, _) => p1 < x2 | Base x2 => x1 < x2
  )
//
end // end of [lt_dualnum_dualnum]

(* ****** ****** *)

extern fun
lte_dualnum_dualnum (p1: dualnum, p2: dualnum): bool
overload <= with lte_dualnum_dualnum

implement
lte_dualnum_dualnum (p1, p2) = let
in
//
case+ p1 of
| Bundle (_, x1, _) => (
  case+ p2 of Bundle (_, x2, _) => x1 <= x2 | Base x2 => x1 <= p2
  )
| Base x1 => (
  case+ p2 of Bundle (_, x2, _) => p1 <= x2 | Base x2 => x1 <= x2
  )
//
end // end of [lte_dualnum_dualnum]

(* ****** ****** *)

extern fun
gt_dualnum_dualnum (p1: dualnum, p2: dualnum): bool
overload > with gt_dualnum_dualnum
implement
gt_dualnum_dualnum (p1, p2) = lt_dualnum_dualnum (p2, p1)

(* ****** ****** *)

fn square (p: dualnum): dualnum = p * p

(* ****** ****** *)

fn list_tabulate{n:nat}
(
  f: !natLt n -<cloptr1> dualnum, n: int n
) : dualnumlst n = let
//
fun loop {
  i:int | ~1 <= i; i < n
} .<i+1>. (
  f: !natLt n -<cloptr1> dualnum, i: int i, res: dualnumlst (n-i-1)
) : dualnumlst (n) =
  if i >= 0 then loop (f, i-1, list_cons{dualnum}(f(i), res)) else res
// end of [loop]
//
in
  loop (f, n-1, list_nil ())
end // end of [list_tabulate]

(* ****** ****** *)

fun vplus
  {n:nat} .<n>. (
  us: dualnumlst n, vs: dualnumlst n
) : dualnumlst n =
  case+ us of
  | list_cons (u, us) => let
      val+list_cons (v, vs) = vs
    in
      list_cons{dualnum}(u + v, vplus (us, vs))
    end // end of [list_cons]
  | list_nil () => list_nil ()
// end of [vplus]

fun vminus
  {n:nat} .<n>. (
  us: dualnumlst n, vs: dualnumlst n
) : dualnumlst n =
  case+ us of
  | list_cons (u, us) => let
      val+list_cons (v, vs) = vs
    in
      list_cons{dualnum}(u - v, vminus (us, vs))
    end // end of [list_cons]
  | list_nil () => list_nil ()
// end of [vminus]

fun vscale {n:nat}
  (k: dualnum, xs: dualnumlst n): dualnumlst n =
  case+ xs of
  | list_cons (x, xs) => list_cons{dualnum}(k * x, vscale (k, xs))
  | list_nil () => list_nil ()
// end of [vscale]

(* ****** ****** *)

fn magnitude_squared
  (xs: dualnumlst): dualnum = let
//
fun aux {n:nat} .<n>.
  (xs: dualnumlst n, res: dualnum): dualnum =
(
  case+ xs of list_cons (x, xs) => aux (xs, res + x * x) | _ => res
)
//
in
  aux (xs, _0)
end // end of [magnitude_squared]

fn magnitude
(
  xs: dualnumlst
) : dualnum =
  sqrt_dualnum (magnitude_squared xs)
// end of [magnitude]

fn distance{n:nat}
(
  us: dualnumlst n, vs: dualnumlst n
): dualnum =
  magnitude (vminus (us, vs))
// end of [distance]

(* ****** ****** *)

fun list_nth_get {n:nat} .<n>.
  (xs: dualnumlst n, i: natLt n): dualnum =
(
  if i > 0 then begin
    let val+list_cons (_, xs) = xs in list_nth_get (xs, i-1) end
  end else begin
    let val+list_cons (x, _) = xs in x end
  end (* end of [if] *)
) // end of [list_nth_get]

fun list_nth_set {n:nat} .<n>.
  (xs: dualnumlst n, i: natLt n, x0: dualnum): dualnumlst n =
(
  if i > 0 then let
    val+list_cons (x, xs) = xs
  in
    list_cons{dualnum}(x, list_nth_set (xs, i-1, x0))
  end else begin
    let val+list_cons (_, xs) = xs in list_cons{dualnum}(x0, xs) end
  end (* end of [if] *)
) // end of [list_nth_set]

(* ****** ****** *)

fn gradient{n:nat}
  (f: dualnumlst n -<cloref1> dualnum, xs: dualnumlst n)
  : dualnumlst n = let
//
val fi =
  lam (
    i: natLt n
  ): dualnum =<cloptr1>
  derivative (
    lam xi => f (list_nth_set (xs, i, xi)), list_nth_get (xs, i)
  ) // end of [derivative]
// end of [val]
//
val gxs =
list_tabulate (fi, list_length xs)
val (
) = cloptr_free (fi) where
{
  extern fun cloptr_free {a:vtype} (f: a): void = "atspre_mfree_gc"
} // end of [val]
(*
val () =
(
  print "gradient: xs = "; print_dualnumlst xs; print_newline ();
  print "gradient: gxs = "; print_dualnumlst gxs; print_newline ();
) // end of [val]
*)
in
  gxs
end // end of [gradient]

(* ****** ****** *)

val PRECISION = Base (1e-5)

fn multivariate_argmin{n:nat}
(
  f: dualnumlst n -<cloref1> dualnum, xs: dualnumlst n
) : dualnumlst n = let
//
macdef g (xs) = gradient (f, ,(xs))
//
fun loop
(
  f: dualnumlst n -<cloref1> dualnum
, xs: dualnumlst n, fxs: dualnum, gxs: dualnumlst n, eta: dualnum, i: int
) :<fun1> dualnumlst n = let
  macdef g (xs) = gradient (f, ,(xs))
in
//
if magnitude gxs <= PRECISION then xs
else if i = 10 then loop (f, xs, fxs, gxs, _2 * eta, 0)
else let
  val xs' = vminus (xs, vscale (eta, gxs))
in
  if distance (xs, xs') <= PRECISION then
    xs
  else let
    val fxs' = f (xs')
  in
    if fxs' < fxs then
      loop (f, xs', fxs', g xs', eta, i+1)
    else
      loop (f, xs, fxs, gxs, eta / _2, 0)
    // end of [if]
  end // end of [if]
end // end of [if]
//
end // end of [loop]
//
in
  loop (f, xs, f xs, g xs, PRECISION, 0)
end // end of [multivariate_argmin]

fn
multivariate_argmax{n:nat}
(
  f: dualnumlst n -<cloref1> dualnum, xs: dualnumlst n
) : dualnumlst n =
  multivariate_argmin (lam xs => ~(f xs), xs)
// end of [multivariate_argmax]

(* ****** ****** *)

fn multivariate_max{n:nat}
  (f: dualnumlst n -<cloref1> dualnum, xs: dualnumlst n): dualnum =
  f (multivariate_argmax (f, xs))
// end of [multivariate_max]

(* ****** ****** *)

fn saddle (): void = let
//
val start = $lst{dualnum} (_1, _1)
//
val xy1_star: dualnum2 = let
  fn f1 (
    xy1: dualnum2
  ) :<cloref1> dualnum = let
    val+list_pair (x1, y1) = xy1
    val sum = x1 * x1 + y1 * y1
    fn f2 (
      xy2: dualnum2
    ) :<cloref1> dualnum = let
      val+list_pair (x2, y2) = xy2
    in
      sum - (x2 * x2 + y2 * y2)
    end // end of [f2]
  in
    multivariate_max (f2, start)
  end // end of [f1]
in
  multivariate_argmin (f1, start)
end // end of [xy1_star]
//
val+list_pair (x1_star, y1_star) = xy1_star
//
val xy2_star: dualnum2 = let
  val sum = x1_star * x1_star + y1_star * y1_star
  fn f3 (
    xy2: dualnum2
  ) :<cloref1> dualnum = let
    val+list_pair (x2, y2) = xy2
  in
    sum - (x2 * x2 + y2 * y2)
  end // end of [f3]
in
  multivariate_argmax (f3, start)
end // end of [xy2_star]
//
val+list_pair (x2_star, y2_star) = xy2_star
//
in (* in of [let] *)
//
println! (x1_star); println! (y1_star);
println! (x2_star); println! (y2_star);
//
end // end of [saddle]

(* ****** ****** *)

fn particle () = let
//
fn naive_euler
  (w: dualnum): dualnum = let
//
val _10 = Base 10.0
val delta_t = Base 1e-1
val charge1 = $lst{dualnum}(_10, _10 - w)
val charge2 = $lst{dualnum}(_10, _0)
val charges = $lst{dualnum2} (charge1, charge2)
//
fun p
(
  xs: dualnum2
) :<cloref1> dualnum = let
  fun aux (
    charges: List dualnum2, res: dualnum
  ) :<cloref1> dualnum =
  (
    case+ charges of
    | list_cons (charge, charges) =>
        aux (charges, res + recip_dualnum (distance (xs, charge)))
    | list_nil () => res
  ) // end of [aux]
in
  aux (charges, _0)
end // end of [p]
//
fun loop
(
  xs: dualnum2
, xs_dot: dualnum2
) :<cloref1> dualnum = let
  val xs_Dot = vscale (__1, gradient (p, xs))
  val xs_new = vplus (xs, vscale (delta_t, xs_dot))
in
  if list_nth_get (xs_new, 1) > _0 then
    loop (xs_new, vplus (xs_dot, vscale (delta_t, xs_Dot)))
  else let
    val delta_t_f = ~(list_nth_get (xs, 1) / list_nth_get (xs_dot, 1))
    val xs_t_f = vplus (xs, vscale (delta_t_f, xs_dot))
  in
    square (list_nth_get (xs_t_f, 0))
  end // end of [if]
end // end of [loop]
//
val xs_initial = $lst{dualnum}(_0, Base 8.0)
val xs_dot_initial = $lst{dualnum}(Base 0.75, _0)
//
in
  loop (xs_initial, xs_dot_initial)
end // end [naive_euler]
//
val w0 = _0
val ws_star = let
//
fn f (ws: dualnum1):<cloref1> dualnum =
(
  let val+list_sing (w) = ws in naive_euler (w) end
) // end of [f]
//
in
  multivariate_argmin (f, $lst{dualnum}(w0))
end // end of [val]

val list_sing (w_star) = ws_star

in (* in of [let] *)
//
  println! (w_star)
//
end // end of [particle]

(* ****** ****** *)

(*
//
// saddle:
// 8.2463248261403561e-06
// 8.2463248261403561e-06
// 8.2463248261403561e-06
// 8.2463248261403561e-06
//
// particle:
// 0.20719187464861194
//
*)

(* ****** ****** *)

implement
main0 () =
{
  val () = saddle () // test
  val () = particle () // test
} // end of [main0]

(* ****** ****** *)

(* end of [autodiff.dats] *)