1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
|
(*
**
** Automatic Differentiation
**
** The code is essentially translated fro
**
** Author: Hongwei Xi (hwxi AT cs DOT bu DOT edu)
** Time: January, 2008
**
*)
(* ****** ****** *)
//
// HX-2012-11-26: ported to ATS/Postiats
//
(* ****** ****** *)
//
// HX-2012-06-21: compiled to run with ATS/Postiats
//
(* ****** ****** *)
//
// HX-2012-06-21:
// By the current standard, the following code looks
// a bit ugly. However, it does shed some light on coding
// in ATS during its early development.
//
(* ****** ****** *)
//
#include
"share/atspre_staload.hats"
//
(* ****** ****** *)
staload M = "libc/SATS/math.sats"
(* ****** ****** *)
datatype dualnum =
| Base of double
| Bundle of (int, dualnum, dualnum)
// end of [dualnum]
(* ****** ****** *)
typedef
dualnumlst (n:int) = list (dualnum, n)
typedef dualnumlst = [n:nat] dualnumlst (n)
typedef dualnum1 = dualnumlst(1) and dualnum2 = dualnumlst(2)
(* ****** ****** *)
val _0: dualnum = Base (0.0)
val _1: dualnum = Base (1.0)
val _2: dualnum = Base (2.0)
val __1: dualnum = Base (~1.0)
(* ****** ****** *)
fn epsilon
(p: dualnum): int =
(
case+ p of Base _ => 0 | Bundle (e, _, _) => e
) // end of [epsilon]
fn primal
(
e: int, p: dualnum
) : dualnum = case+ p of
| Base _ => p | Bundle (e1, x, _) => if e1 < e then p else x
// end of [primal]
fn perturbe
(
e: int, p: dualnum
) : dualnum = begin
case+ p of
| Base _ => _0
| Bundle (e1, _, x') => if e1 < e then _0 else x'
end // end of [perturbe]
(* ****** ****** *)
local
val EPSILON = ref_make_elt<int> (0)
in (* in of [local] *)
fn derivative
(
f: dualnum -<cloref1> dualnum, x: dualnum
) : dualnum = let
val e = !EPSILON + 1
val () = !EPSILON := e
val result = perturbe (e, f (Bundle (e, x, _1)))
val () = !EPSILON := e - 1
in
result
end // end of [derivative]
end // end of [local]
(* ****** ****** *)
fun print_dualnum
(p: dualnum): void =
(
case+ p of
| Bundle
(_, x, _) => print_dualnum x
| Base (x) =>
$extfcall (void, "printf", "%.18g", x)
) // end of [print_dualnum]
overload print with print_dualnum
fn print_dualnumlst
(ps: dualnumlst): void = let
//
fun loop
(
i: int, ps: dualnumlst
) : void =
(
case+ ps of
| list_cons (p, ps) =>
(
if i > 0 then print ", "; print_dualnum p; loop (i+1, ps)
) // end of [list_cons]
| list_nil ((*void*)) => ()
) (* end of [loop] *)
//
in
loop (0, ps)
end // end of [print_dualnumlst]
(* ****** ****** *)
extern fun
neg_dualnum (p: dualnum): dualnum
extern fun
recip_dualnum (p: dualnum): dualnum
extern fun
add_dualnum_dualnum (p1: dualnum, p2: dualnum): dualnum
extern fun
sub_dualnum_dualnum (p1: dualnum, p2: dualnum): dualnum
extern fun
mul_dualnum_dualnum (p1: dualnum, p2: dualnum): dualnum
extern fun
div_dualnum_dualnum (p1: dualnum, p2: dualnum): dualnum
(* ****** ****** *)
overload ~ with neg_dualnum
overload + with add_dualnum_dualnum
overload - with sub_dualnum_dualnum
overload * with mul_dualnum_dualnum
overload / with div_dualnum_dualnum
(* ****** ****** *)
implement
neg_dualnum (p) =
(
case+ p of
| Bundle
(e, x, x') => Bundle (e, ~x, ~x')
| Base (x) => Base (~x)
)
// end of [neg_dualnum]
(* ****** ****** *)
implement
add_dualnum_dualnum
(p1, p2) = let
in
//
case+ p1 of
| Bundle (e1, x1, x1') => (
case+ p2 of
| Bundle
(e2, x2, x2') => let
val e = (if e1 <= e2 then e2 else e1): int
val x = primal (e, p1) + primal (e, p2)
val x' = perturbe (e, p1) + perturbe (e, p2)
in
Bundle (e, x, x')
end
| Base (x2) => Bundle (e1, x1 + p2, x1')
) // end of [Bundle]
| Base x1 => (
case+ p2 of
| Bundle
(e2, x2, x2') => Bundle (e2, p1 + x2, x2')
| Base (x2) => Base (x1 + x2)
) // end of [Base]
//
end // end of [add_dualnum_dualnum]
(* ****** ****** *)
implement
sub_dualnum_dualnum
(p1, p2) = let
in
//
case+ p1 of
| Bundle
(e1, x1, x1') => (
case+ p2 of
| Bundle
(e2, x2, x2') => let
val e = (if e1 <= e2 then e2 else e1): int
val x = primal (e, p1) - primal (e, p2)
val x' = perturbe (e, p1) - perturbe (e, p2)
in
Bundle (e, x, x')
end
| Base x2 => Bundle (e1, x1 - p2, x1')
) // end of [Bundle]
| Base (x1) => (
case+ p2 of
| Bundle
(e2, x2, x2') => Bundle (e2, p1 - x2, ~x2')
| Base x2 => Base (x1 - x2)
) // end of [Base]
//
end // end of [sub_dualnum_dualnum]
(* ****** ****** *)
implement
mul_dualnum_dualnum
(p1, p2) = let
in
//
case+ p1 of
| Bundle (e1, x1, x1') => (
case+ p2 of
| Bundle
(e2, x2, x2') => let
val e = (if e1 <= e2 then e2 else e1): int
val x1 = primal (e, p1) and x2 = primal (e, p2)
val x = x1 * x2
val x' = x1 * perturbe (e, p2) + x2 * perturbe (e, p1)
in
Bundle (e, x, x')
end
| Base (x2) => Bundle (e1, x1 * p2, p2 * x1')
) // end of [Bundle]
| Base x1 => (
case+ p2 of
| Bundle
(e2, x2, x2') => Bundle (e2, p1 * x2, p1 * x2')
| Base x2 => Base (x1 * x2)
) // end of [Base]
//
end // end of [mul_dualnum_dualnum]
(* ****** ****** *)
implement
recip_dualnum (p) =
(
case+ p of
| Bundle (e, x, x') =>
Bundle (e, recip_dualnum x, (~x') / (x * x))
| Base x => Base (1.0 / x)
) // end of [recip_dualnum_dualnum]
implement
div_dualnum_dualnum (p1, p2) = p1 * (recip_dualnum p2)
(* ****** ****** *)
extern fun
sqrt_dualnum (p: dualnum): dualnum
implement
sqrt_dualnum (p) = let
in
//
case+ p of
| Bundle
(e, x, x') => let
val x_sqrt = sqrt_dualnum (x)
val x'_sqrt = x' / (x_sqrt + x_sqrt)
in
Bundle (e, x_sqrt, x'_sqrt)
end
| Base (x) => Base ($M.sqrt_double (x))
//
end // end of [sqrt_dualnum]
(* ****** ****** *)
extern fun
lt_dualnum_dualnum (p1: dualnum, p2: dualnum): bool
overload < with lt_dualnum_dualnum
implement
lt_dualnum_dualnum (p1, p2) = let
in
//
case+ p1 of
| Bundle (_, x1, _) => (
case+ p2 of Bundle (_, x2, _) => x1 < x2 | Base x2 => x1 < p2
)
| Base x1 => (
case+ p2 of Bundle (_, x2, _) => p1 < x2 | Base x2 => x1 < x2
)
//
end // end of [lt_dualnum_dualnum]
(* ****** ****** *)
extern fun
lte_dualnum_dualnum (p1: dualnum, p2: dualnum): bool
overload <= with lte_dualnum_dualnum
implement
lte_dualnum_dualnum (p1, p2) = let
in
//
case+ p1 of
| Bundle (_, x1, _) => (
case+ p2 of Bundle (_, x2, _) => x1 <= x2 | Base x2 => x1 <= p2
)
| Base x1 => (
case+ p2 of Bundle (_, x2, _) => p1 <= x2 | Base x2 => x1 <= x2
)
//
end // end of [lte_dualnum_dualnum]
(* ****** ****** *)
extern fun
gt_dualnum_dualnum (p1: dualnum, p2: dualnum): bool
overload > with gt_dualnum_dualnum
implement
gt_dualnum_dualnum (p1, p2) = lt_dualnum_dualnum (p2, p1)
(* ****** ****** *)
fn square (p: dualnum): dualnum = p * p
(* ****** ****** *)
fn list_tabulate{n:nat}
(
f: !natLt n -<cloptr1> dualnum, n: int n
) : dualnumlst n = let
//
fun loop {
i:int | ~1 <= i; i < n
} .<i+1>. (
f: !natLt n -<cloptr1> dualnum, i: int i, res: dualnumlst (n-i-1)
) : dualnumlst (n) =
if i >= 0 then loop (f, i-1, list_cons{dualnum}(f(i), res)) else res
// end of [loop]
//
in
loop (f, n-1, list_nil ())
end // end of [list_tabulate]
(* ****** ****** *)
fun vplus
{n:nat} .<n>. (
us: dualnumlst n, vs: dualnumlst n
) : dualnumlst n =
case+ us of
| list_cons (u, us) => let
val+list_cons (v, vs) = vs
in
list_cons{dualnum}(u + v, vplus (us, vs))
end // end of [list_cons]
| list_nil () => list_nil ()
// end of [vplus]
fun vminus
{n:nat} .<n>. (
us: dualnumlst n, vs: dualnumlst n
) : dualnumlst n =
case+ us of
| list_cons (u, us) => let
val+list_cons (v, vs) = vs
in
list_cons{dualnum}(u - v, vminus (us, vs))
end // end of [list_cons]
| list_nil () => list_nil ()
// end of [vminus]
fun vscale {n:nat}
(k: dualnum, xs: dualnumlst n): dualnumlst n =
case+ xs of
| list_cons (x, xs) => list_cons{dualnum}(k * x, vscale (k, xs))
| list_nil () => list_nil ()
// end of [vscale]
(* ****** ****** *)
fn magnitude_squared
(xs: dualnumlst): dualnum = let
//
fun aux {n:nat} .<n>.
(xs: dualnumlst n, res: dualnum): dualnum =
(
case+ xs of list_cons (x, xs) => aux (xs, res + x * x) | _ => res
)
//
in
aux (xs, _0)
end // end of [magnitude_squared]
fn magnitude
(
xs: dualnumlst
) : dualnum =
sqrt_dualnum (magnitude_squared xs)
// end of [magnitude]
fn distance{n:nat}
(
us: dualnumlst n, vs: dualnumlst n
): dualnum =
magnitude (vminus (us, vs))
// end of [distance]
(* ****** ****** *)
fun list_nth_get {n:nat} .<n>.
(xs: dualnumlst n, i: natLt n): dualnum =
(
if i > 0 then begin
let val+list_cons (_, xs) = xs in list_nth_get (xs, i-1) end
end else begin
let val+list_cons (x, _) = xs in x end
end (* end of [if] *)
) // end of [list_nth_get]
fun list_nth_set {n:nat} .<n>.
(xs: dualnumlst n, i: natLt n, x0: dualnum): dualnumlst n =
(
if i > 0 then let
val+list_cons (x, xs) = xs
in
list_cons{dualnum}(x, list_nth_set (xs, i-1, x0))
end else begin
let val+list_cons (_, xs) = xs in list_cons{dualnum}(x0, xs) end
end (* end of [if] *)
) // end of [list_nth_set]
(* ****** ****** *)
fn gradient{n:nat}
(f: dualnumlst n -<cloref1> dualnum, xs: dualnumlst n)
: dualnumlst n = let
//
val fi =
lam (
i: natLt n
): dualnum =<cloptr1>
derivative (
lam xi => f (list_nth_set (xs, i, xi)), list_nth_get (xs, i)
) // end of [derivative]
// end of [val]
//
val gxs =
list_tabulate (fi, list_length xs)
val (
) = cloptr_free (fi) where
{
extern fun cloptr_free {a:vtype} (f: a): void = "atspre_mfree_gc"
} // end of [val]
(*
val () =
(
print "gradient: xs = "; print_dualnumlst xs; print_newline ();
print "gradient: gxs = "; print_dualnumlst gxs; print_newline ();
) // end of [val]
*)
in
gxs
end // end of [gradient]
(* ****** ****** *)
val PRECISION = Base (1e-5)
fn multivariate_argmin{n:nat}
(
f: dualnumlst n -<cloref1> dualnum, xs: dualnumlst n
) : dualnumlst n = let
//
macdef g (xs) = gradient (f, ,(xs))
//
fun loop
(
f: dualnumlst n -<cloref1> dualnum
, xs: dualnumlst n, fxs: dualnum, gxs: dualnumlst n, eta: dualnum, i: int
) :<fun1> dualnumlst n = let
macdef g (xs) = gradient (f, ,(xs))
in
//
if magnitude gxs <= PRECISION then xs
else if i = 10 then loop (f, xs, fxs, gxs, _2 * eta, 0)
else let
val xs' = vminus (xs, vscale (eta, gxs))
in
if distance (xs, xs') <= PRECISION then
xs
else let
val fxs' = f (xs')
in
if fxs' < fxs then
loop (f, xs', fxs', g xs', eta, i+1)
else
loop (f, xs, fxs, gxs, eta / _2, 0)
// end of [if]
end // end of [if]
end // end of [if]
//
end // end of [loop]
//
in
loop (f, xs, f xs, g xs, PRECISION, 0)
end // end of [multivariate_argmin]
fn
multivariate_argmax{n:nat}
(
f: dualnumlst n -<cloref1> dualnum, xs: dualnumlst n
) : dualnumlst n =
multivariate_argmin (lam xs => ~(f xs), xs)
// end of [multivariate_argmax]
(* ****** ****** *)
fn multivariate_max{n:nat}
(f: dualnumlst n -<cloref1> dualnum, xs: dualnumlst n): dualnum =
f (multivariate_argmax (f, xs))
// end of [multivariate_max]
(* ****** ****** *)
fn saddle (): void = let
//
val start = $lst{dualnum} (_1, _1)
//
val xy1_star: dualnum2 = let
fn f1 (
xy1: dualnum2
) :<cloref1> dualnum = let
val+list_pair (x1, y1) = xy1
val sum = x1 * x1 + y1 * y1
fn f2 (
xy2: dualnum2
) :<cloref1> dualnum = let
val+list_pair (x2, y2) = xy2
in
sum - (x2 * x2 + y2 * y2)
end // end of [f2]
in
multivariate_max (f2, start)
end // end of [f1]
in
multivariate_argmin (f1, start)
end // end of [xy1_star]
//
val+list_pair (x1_star, y1_star) = xy1_star
//
val xy2_star: dualnum2 = let
val sum = x1_star * x1_star + y1_star * y1_star
fn f3 (
xy2: dualnum2
) :<cloref1> dualnum = let
val+list_pair (x2, y2) = xy2
in
sum - (x2 * x2 + y2 * y2)
end // end of [f3]
in
multivariate_argmax (f3, start)
end // end of [xy2_star]
//
val+list_pair (x2_star, y2_star) = xy2_star
//
in (* in of [let] *)
//
println! (x1_star); println! (y1_star);
println! (x2_star); println! (y2_star);
//
end // end of [saddle]
(* ****** ****** *)
fn particle () = let
//
fn naive_euler
(w: dualnum): dualnum = let
//
val _10 = Base 10.0
val delta_t = Base 1e-1
val charge1 = $lst{dualnum}(_10, _10 - w)
val charge2 = $lst{dualnum}(_10, _0)
val charges = $lst{dualnum2} (charge1, charge2)
//
fun p
(
xs: dualnum2
) :<cloref1> dualnum = let
fun aux (
charges: List dualnum2, res: dualnum
) :<cloref1> dualnum =
(
case+ charges of
| list_cons (charge, charges) =>
aux (charges, res + recip_dualnum (distance (xs, charge)))
| list_nil () => res
) // end of [aux]
in
aux (charges, _0)
end // end of [p]
//
fun loop
(
xs: dualnum2
, xs_dot: dualnum2
) :<cloref1> dualnum = let
val xs_Dot = vscale (__1, gradient (p, xs))
val xs_new = vplus (xs, vscale (delta_t, xs_dot))
in
if list_nth_get (xs_new, 1) > _0 then
loop (xs_new, vplus (xs_dot, vscale (delta_t, xs_Dot)))
else let
val delta_t_f = ~(list_nth_get (xs, 1) / list_nth_get (xs_dot, 1))
val xs_t_f = vplus (xs, vscale (delta_t_f, xs_dot))
in
square (list_nth_get (xs_t_f, 0))
end // end of [if]
end // end of [loop]
//
val xs_initial = $lst{dualnum}(_0, Base 8.0)
val xs_dot_initial = $lst{dualnum}(Base 0.75, _0)
//
in
loop (xs_initial, xs_dot_initial)
end // end [naive_euler]
//
val w0 = _0
val ws_star = let
//
fn f (ws: dualnum1):<cloref1> dualnum =
(
let val+list_sing (w) = ws in naive_euler (w) end
) // end of [f]
//
in
multivariate_argmin (f, $lst{dualnum}(w0))
end // end of [val]
val list_sing (w_star) = ws_star
in (* in of [let] *)
//
println! (w_star)
//
end // end of [particle]
(* ****** ****** *)
(*
//
// saddle:
// 8.2463248261403561e-06
// 8.2463248261403561e-06
// 8.2463248261403561e-06
// 8.2463248261403561e-06
//
// particle:
// 0.20719187464861194
//
*)
(* ****** ****** *)
implement
main0 () =
{
val () = saddle () // test
val () = particle () // test
} // end of [main0]
(* ****** ****** *)
(* end of [autodiff.dats] *)
|