1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
/**********************************************************************
FFT.cpp
Dominic Mazzoni
September 2000
This file contains a few FFT routines, including a real-FFT
routine that is almost twice as fast as a normal complex FFT,
and a power spectrum routine when you know you don't care
about phase information.
Some of this code was based on a free implementation of an FFT
by Don Cross, available on the web at:
http://www.intersrv.com/~dcross/fft.html
The basic algorithm for his code was based on Numerican Recipes
in Fortran. I optimized his code further by reducing array
accesses, caching the bit reversal table, and eliminating
float-to-double conversions, and I added the routines to
calculate a real FFT and a real power spectrum.
**********************************************************************/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "FFT.h"
int **gFFTBitTable = NULL;
const int MaxFastBits = 16;
int IsPowerOfTwo(int x)
{
if (x < 2)
return false;
if (x & (x - 1)) /* Thanks to 'byang' for this cute trick! */
return false;
return true;
}
int NumberOfBitsNeeded(int PowerOfTwo)
{
int i;
if (PowerOfTwo < 2) {
fprintf(stderr, "Error: FFT called with size %d\n", PowerOfTwo);
exit(1);
}
for (i = 0;; i++)
if (PowerOfTwo & (1 << i))
return i;
}
int ReverseBits(int index, int NumBits)
{
int i, rev;
for (i = rev = 0; i < NumBits; i++) {
rev = (rev << 1) | (index & 1);
index >>= 1;
}
return rev;
}
void InitFFT()
{
gFFTBitTable = new int *[MaxFastBits];
int len = 2;
for (int b = 1; b <= MaxFastBits; b++) {
gFFTBitTable[b - 1] = new int[len];
for (int i = 0; i < len; i++)
gFFTBitTable[b - 1][i] = ReverseBits(i, b);
len <<= 1;
}
}
inline int FastReverseBits(int i, int NumBits)
{
if (NumBits <= MaxFastBits)
return gFFTBitTable[NumBits - 1][i];
else
return ReverseBits(i, NumBits);
}
/*
* Complex Fast Fourier Transform
*/
void FFT(int NumSamples,
bool InverseTransform,
float *RealIn, float *ImagIn, float *RealOut, float *ImagOut)
{
int NumBits; /* Number of bits needed to store indices */
int i, j, k, n;
int BlockSize, BlockEnd;
double angle_numerator = 2.0 * M_PI;
float tr, ti; /* temp real, temp imaginary */
if (!IsPowerOfTwo(NumSamples)) {
fprintf(stderr, "%d is not a power of two\n", NumSamples);
exit(1);
}
if (!gFFTBitTable)
InitFFT();
if (InverseTransform)
angle_numerator = -angle_numerator;
NumBits = NumberOfBitsNeeded(NumSamples);
/*
** Do simultaneous data copy and bit-reversal ordering into outputs...
*/
for (i = 0; i < NumSamples; i++) {
j = FastReverseBits(i, NumBits);
RealOut[j] = RealIn[i];
ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i];
}
/*
** Do the FFT itself...
*/
BlockEnd = 1;
for (BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) {
double delta_angle = angle_numerator / (double) BlockSize;
float sm2 = sin(-2 * delta_angle);
float sm1 = sin(-delta_angle);
float cm2 = cos(-2 * delta_angle);
float cm1 = cos(-delta_angle);
float w = 2 * cm1;
float ar0, ar1, ar2, ai0, ai1, ai2;
for (i = 0; i < NumSamples; i += BlockSize) {
ar2 = cm2;
ar1 = cm1;
ai2 = sm2;
ai1 = sm1;
for (j = i, n = 0; n < BlockEnd; j++, n++) {
ar0 = w * ar1 - ar2;
ar2 = ar1;
ar1 = ar0;
ai0 = w * ai1 - ai2;
ai2 = ai1;
ai1 = ai0;
k = j + BlockEnd;
tr = ar0 * RealOut[k] - ai0 * ImagOut[k];
ti = ar0 * ImagOut[k] + ai0 * RealOut[k];
RealOut[k] = RealOut[j] - tr;
ImagOut[k] = ImagOut[j] - ti;
RealOut[j] += tr;
ImagOut[j] += ti;
}
}
BlockEnd = BlockSize;
}
/*
** Need to normalize if inverse transform...
*/
if (InverseTransform) {
float denom = (float) NumSamples;
for (i = 0; i < NumSamples; i++) {
RealOut[i] /= denom;
ImagOut[i] /= denom;
}
}
}
/*
* Real Fast Fourier Transform
*
* This function was based on the code in Numerical Recipes in C.
* In Num. Rec., the inner loop is based on a single 1-based array
* of interleaved real and imaginary numbers. Because we have two
* separate zero-based arrays, our indices are quite different.
* Here is the correspondence between Num. Rec. indices and our indices:
*
* i1 <-> real[i]
* i2 <-> imag[i]
* i3 <-> real[n/2-i]
* i4 <-> imag[n/2-i]
*/
void RealFFT(int NumSamples, float *RealIn, float *RealOut, float *ImagOut)
{
int Half = NumSamples / 2;
int i;
float theta = M_PI / Half;
float *tmpReal = new float[Half];
float *tmpImag = new float[Half];
for (i = 0; i < Half; i++) {
tmpReal[i] = RealIn[2 * i];
tmpImag[i] = RealIn[2 * i + 1];
}
FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut);
float wtemp = float (sin(0.5 * theta));
float wpr = -2.0 * wtemp * wtemp;
float wpi = float (sin(theta));
float wr = 1.0 + wpr;
float wi = wpi;
int i3;
float h1r, h1i, h2r, h2i;
for (i = 1; i < Half / 2; i++) {
i3 = Half - i;
h1r = 0.5 * (RealOut[i] + RealOut[i3]);
h1i = 0.5 * (ImagOut[i] - ImagOut[i3]);
h2r = 0.5 * (ImagOut[i] + ImagOut[i3]);
h2i = -0.5 * (RealOut[i] - RealOut[i3]);
RealOut[i] = h1r + wr * h2r - wi * h2i;
ImagOut[i] = h1i + wr * h2i + wi * h2r;
RealOut[i3] = h1r - wr * h2r + wi * h2i;
ImagOut[i3] = -h1i + wr * h2i + wi * h2r;
wr = (wtemp = wr) * wpr - wi * wpi + wr;
wi = wi * wpr + wtemp * wpi + wi;
}
RealOut[0] = (h1r = RealOut[0]) + ImagOut[0];
ImagOut[0] = h1r - ImagOut[0];
delete[]tmpReal;
delete[]tmpImag;
}
/*
* PowerSpectrum
*
* This function computes the same as RealFFT, above, but
* adds the squares of the real and imaginary part of each
* coefficient, extracting the power and throwing away the
* phase.
*
* For speed, it does not call RealFFT, but duplicates some
* of its code.
*/
void PowerSpectrum(int NumSamples, float *In, float *Out)
{
int Half = NumSamples / 2;
int i;
float theta = M_PI / Half;
float *tmpReal = new float[Half];
float *tmpImag = new float[Half];
float *RealOut = new float[Half];
float *ImagOut = new float[Half];
for (i = 0; i < Half; i++) {
tmpReal[i] = In[2 * i];
tmpImag[i] = In[2 * i + 1];
}
FFT(Half, 0, tmpReal, tmpImag, RealOut, ImagOut);
float wtemp = float (sin(0.5 * theta));
float wpr = -2.0 * wtemp * wtemp;
float wpi = float (sin(theta));
float wr = 1.0 + wpr;
float wi = wpi;
int i3;
float h1r, h1i, h2r, h2i, rt, it;
for (i = 1; i < Half / 2; i++) {
i3 = Half - i;
h1r = 0.5 * (RealOut[i] + RealOut[i3]);
h1i = 0.5 * (ImagOut[i] - ImagOut[i3]);
h2r = 0.5 * (ImagOut[i] + ImagOut[i3]);
h2i = -0.5 * (RealOut[i] - RealOut[i3]);
rt = h1r + wr * h2r - wi * h2i;
it = h1i + wr * h2i + wi * h2r;
Out[i] = rt * rt + it * it;
rt = h1r - wr * h2r + wi * h2i;
it = -h1i + wr * h2i + wi * h2r;
Out[i3] = rt * rt + it * it;
wr = (wtemp = wr) * wpr - wi * wpi + wr;
wi = wi * wpr + wtemp * wpi + wi;
}
rt = (h1r = RealOut[0]) + ImagOut[0];
it = h1r - ImagOut[0];
Out[0] = rt * rt + it * it;
rt = RealOut[Half / 2];
it = ImagOut[Half / 2];
Out[Half / 2] = rt * rt + it * it;
delete[]tmpReal;
delete[]tmpImag;
delete[]RealOut;
delete[]ImagOut;
}
/*
* Windowing Functions
*/
int NumWindowFuncs()
{
return 4;
}
char *WindowFuncName(int whichFunction)
{
switch (whichFunction) {
default:
case 0:
return "Rectangular";
case 1:
return "Bartlett";
case 2:
return "Hamming";
case 3:
return "Hanning";
}
}
void WindowFunc(int whichFunction, int NumSamples, float *in)
{
int i;
if (whichFunction == 1) {
// Bartlett (triangular) window
for (i = 0; i < NumSamples / 2; i++) {
in[i] *= (i / (float) (NumSamples / 2));
in[i + (NumSamples / 2)] *=
(1.0 - (i / (float) (NumSamples / 2)));
}
}
if (whichFunction == 2) {
// Hamming
for (i = 0; i < NumSamples; i++)
in[i] *= 0.54 - 0.46 * cos(2 * M_PI * i / (NumSamples - 1));
}
if (whichFunction == 3) {
// Hanning
for (i = 0; i < NumSamples; i++)
in[i] *= 0.50 - 0.50 * cos(2 * M_PI * i / (NumSamples - 1));
}
}
|