1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
|
/**********************************************************************
FFT.h
Dominic Mazzoni
September 2000
This file contains a few FFT routines, including a real-FFT
routine that is almost twice as fast as a normal complex FFT,
and a power spectrum routine which is more convenient when
you know you don't care about phase information. It now also
contains a few basic windowing functions.
Some of this code was based on a free implementation of an FFT
by Don Cross, available on the web at:
http://www.intersrv.com/~dcross/fft.html
The basic algorithm for his code was based on Numerical Recipes
in Fortran. I optimized his code further by reducing array
accesses, caching the bit reversal table, and eliminating
float-to-double conversions, and I added the routines to
calculate a real FFT and a real power spectrum.
Note: all of these routines use single-precision floats.
I have found that in practice, floats work well until you
get above 8192 samples. If you need to do a larger FFT,
you need to use doubles.
**********************************************************************/
#ifndef M_PI
#define M_PI 3.14159265358979323846 /* pi */
#endif
/*
* This is the function you will use the most often.
* Given an array of floats, this will compute the power
* spectrum by doing a Real FFT and then computing the
* sum of the squares of the real and imaginary parts.
* Note that the output array is half the length of the
* input array, and that NumSamples must be a power of two.
*/
void PowerSpectrum(int NumSamples, float *In, float *Out);
/*
* Computes an FFT when the input data is real but you still
* want complex data as output. The output arrays are half
* the length of the input, and NumSamples must be a power of
* two.
*/
void RealFFT(int NumSamples,
float *RealIn, float *RealOut, float *ImagOut);
/*
* Computes a FFT of complex input and returns complex output.
* Currently this is the only function here that supports the
* inverse transform as well.
*/
void FFT(int NumSamples,
bool InverseTransform,
float *RealIn, float *ImagIn, float *RealOut, float *ImagOut);
/*
* Applies a windowing function to the data in place
*
* 0: Rectangular (no window)
* 1: Bartlett (triangular)
* 2: Hamming
* 3: Hanning
*/
void WindowFunc(int whichFunction, int NumSamples, float *data);
/*
* Returns the name of the windowing function (for UI display)
*/
char *WindowFuncName(int whichFunction);
/*
* Returns the number of windowing functions supported
*/
int NumWindowFuncs();
|