1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
/**********************************************************************
Audacity: A Digital Audio Editor
Spectrum.cpp
Dominic Mazzoni
**********************************************************************/
#include <math.h>
#include "Spectrum.h"
#include "FFT.h"
#include "Prefs.h"
int GetSpectrumWindowSize()
{
return gPrefs->Read("/Spectrum/FFTSize", 256);
}
bool ComputeSpectrum(sampleType * data, int width, int height,
double rate, float *grayscaleOut,
bool autocorrelation)
{
int windowSize = GetSpectrumWindowSize();
int windowFunc = 3;
if (width < windowSize)
return false;
if (!data || !grayscaleOut)
return true;
float *processed = new float[windowSize];
int i;
for (i = 0; i < windowSize; i++)
processed[i] = 0.0;
int half = windowSize / 2;
float *in = new float[windowSize];
float *out = new float[windowSize];
float *out2 = new float[windowSize];
int start = 0;
int windows = 0;
while (start + windowSize <= width) {
for (i = 0; i < windowSize; i++)
in[i] = data[start + i] / 32767.;
WindowFunc(windowFunc, windowSize, in);
if (autocorrelation) {
// Take FFT
FFT(windowSize, false, in, NULL, out, out2);
// Compute power
for (i = 0; i < windowSize; i++)
in[i] = (out[i] * out[i]) + (out2[i] * out2[i]);
// Tolonen and Karjalainen recommend taking the cube root
// of the power, instead of the square root
for (i = 0; i < windowSize; i++)
in[i] = pow(in[i], 1.0 / 3.0);
// Take FFT
FFT(windowSize, false, in, NULL, out, out2);
// Take real part of result
for (i = 0; i < half; i++)
processed[i] += out[i];
} else {
PowerSpectrum(windowSize, in, out);
for (i = 0; i < half; i++)
processed[i] += out[i];
}
start += half;
windows++;
}
int maxFreq = gPrefs->Read("/Spectrum/MaxFreq", 8000);
int maxSamples = int (maxFreq * windowSize / rate + 0.5);
if (maxSamples > half)
maxSamples = half;
if (autocorrelation) {
maxSamples = half;
// Peak Pruning as described by Tolonen and Karjalainen, 2000
// Clip at zero, copy to temp array
for (i = 0; i < maxSamples; i++) {
if (processed[i] < 0.0)
processed[i] = 0.0;
out[i] = processed[i];
}
// Subtract a time-doubled signal (linearly interp.) from the original
// (clipped) signal
for (i = 0; i < maxSamples; i++)
if ((i % 2) == 0)
processed[i] -= out[i / 2];
else
processed[i] -= ((out[i / 2] + out[i / 2 + 1]) / 2);
// Clip at zero again
for (i = 0; i < maxSamples; i++)
if (processed[i] < 0.0)
processed[i] = 0.0;
// Find new max
float max = 0;
for (i = 1; i < maxSamples; i++)
if (processed[i] > max)
max = processed[i];
// Reverse and scale
for (i = 0; i < maxSamples; i++)
in[i] = processed[i] / (windowSize / 4);
for (i = 0; i < maxSamples; i++)
processed[maxSamples - 1 - i] = in[i];
} else {
// Convert to decibels
for (i = 0; i < maxSamples; i++)
processed[i] = 10 * log10(processed[i] / windowSize / windows);
}
// Finally, put it into bins in grayscaleOut[], normalized to a 0.0-1.0 scale
for (i = 0; i < height; i++) {
float bin0 = float (i) * maxSamples / height;
float bin1 = float (i + 1) * maxSamples / height;
float binwidth = bin1 - bin0;
float value = 0.0;
if (int (bin1) == int (bin0))
value = processed[int (bin0)];
else {
value += processed[int (bin0)] * (int (bin0) + 1 - bin0);
bin0 = 1 + int (bin0);
while (bin0 < int (bin1)) {
value += processed[int (bin0)];
bin0 += 1.0;
}
value += processed[int (bin1)] * (bin1 - int (bin1));
value /= binwidth;
}
if (!autocorrelation) {
// Last step converts dB to a 0.0-1.0 range
value = (value + 80.0) / 80.0;
}
if (value > 1.0)
value = 1.0;
if (value < 0.0)
value = 0.0;
grayscaleOut[i] = value;
}
delete[]in;
delete[]out;
delete[]out2;
delete[]processed;
return true;
}
/*
// Bartlett Window (looks like a triangle)
#define WINDOW(j,a,b) (1.0-fabs((((j)-1)-(a))*(b)))
// Square
#ifndef SQR
#define SQR(A) ((A)*(A))
#endif
*/
/*
This function computes the power (mean square amplitude) as
a function of frequency, for some block of audio data.
width: the number of samples
height: the desired number of frequencies
The function returns false if it is not given enough data to
compute an accurate spectrogram - this allows you to call it with
a bigger window if possible.
Algorithm based on "Numerical Recipes in C"
*/
/*
bool ComputeSpectrum(sampleType *data, int width, int height,
double rate, float *out)
{
if (height<16 || height>8192) return false;
// m is the smallest power of two greater than or equal to height
// We will take the Fourier transform of 2*m
//
// The number (2*m) comes up so often we store it in mm
int m=16;
while(m<height)
m = (m << 1);
m = (m << 3);
int mm = m+m;
// Fail if we don't have enough data to do two complete
// Fourier transforms
if (width < mm*2)
return false;
// Otherwise we're okay - if this was just a test, return true
if (data == 0)
return true;
// TODO: Fix bugs so these don't have to be extrasized
float *p = new float[2*m];
float *w = new float[2*m*4];
float *real = new float[2*m*4];
float *imag = new float[2*m*4];
// k is the number of windows we are going to take (and then average
// together)
int k = width / (4*m);
// Accumulate the squared sum of the weights
int j;
float facm = m;
float facp = 1.0/m;
float sumw=0.0;
for(j=0; j<mm; j++)
sumw += SQR(WINDOW(j,facm,facp));
// Initialize the spectrum to zero
for(j=0; j<m; j++)
p[j] = 0.0;
float den = 0;
for(int kk=0; kk<k; kk++) {
// Grab a segment
for(j=0; j<mm; j++) {
w[2*j] = (data[mm*kk+j])/32767.;
}
// Apply window
for(j=0; j<mm; j++) {
float wc = WINDOW(j,facm,facp);
w[j] *= wc;
}
// Apply fourier transform
FFT(mm,0,w,0,real,imag);
for(j=0; j<mm; j++)
w[j] = sqrt(SQR(real[j])+SQR(imag[j]));
// Sum results into previous segments
p[0] += SQR(w[0]);
for(j=1; j<m; j++)
p[j] += (SQR(w[j])+SQR(w[mm-j]));
den += sumw;
}
den *= mm;
// Normalize the output
for(j=0; j<m; j++)
p[j] /= den;
// Copy into "out" buffer
// TODO: Should grab all frequencies, averaging
float max = 0.0;
for(j=0; j<height; j++) {
out[j] = p[j];
if (fabs(out[j]) > max)
max = fabs(out[j]);
}
for(j=0; j<height; j++)
out[j] /= max;
// Log scale:
float min_freq = rate/mm;
float max_freq = 4000.0;
float ratio = max_freq / min_freq;
float a = (log(ratio) / log(2.0)) / (height-1);
max = 0.0;
for(j=0; j<height-1; j++) {
float freq0 = min_freq*pow(2.0,a*j);
float freq1 = min_freq*pow(2.0,a*(j+1));
float index0 = freq0 / min_freq;
float index1 = freq1 / min_freq;
float value;
if (((int)index0) == ((int)index1)) {
value = p[(int)index0]*(index1 - index0);
} else {
int i = (int)index0;
value = p[i]*(i+1-index0);
i++;
while(i<(int)index1) {
value += p[i];
i++;
}
value += p[i] * (index1-i);
}
out[j] = value;
if (value > max)
max = value;
}
for(j=0; j<height-1; j++)
out[j] /= max;
delete[] p;
delete[] w;
delete[] real;
delete[] imag;
return true;
}
*/
|