1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
// Allegro: music representation system, with
// extensible in-memory sequence structure
// upward compatible with MIDI
// implementations in C++ and Serpent
// external, text-based representation
// compatible with Aura
#include "assert.h"
#include "stdlib.h"
#include "allegro.h"
#include "string.h"
//#include "memory.h"
#include "trace.h"
Atoms symbol_table;
bool within(double d1, double d2, double epsilon)
{
d1 -= d2;
return d1 < epsilon && d1 > -epsilon;
}
void Events::expand()
{
max = (max + 5); // extra growth for small sizes
max += (max >> 2); // add 25%
Allegro_event_ptr *new_events = new Allegro_event_ptr[max];
// now do copy
memcpy(new_events, events, len * sizeof(Allegro_event_ptr));
if (events) delete[] events;
events = new_events;
}
Events::~Events()
{
if (events) {
delete[] events;
}
}
void Events::insert(Allegro_event_ptr event)
{
if (max <= len) {
expand();
}
events[len] = event;
len++;
// find insertion point:
for (int i = 0; i < len; i++) {
if (events[i]->time > event->time) {
// insert event at i
memmove(&events[i + 1], &events[i],
sizeof(Allegro_event_ptr) * (len - i - 1));
events[i] = event;
return;
}
}
}
void Events::append(Allegro_event_ptr event)
{
if (max <= len) {
expand();
}
events[len++] = event;
}
void Atoms::expand()
{
max = (max + 5); // extra growth for small sizes
max += (max >> 2); // add 25%
char **new_atoms = new Attribute[max];
// now do copy
memcpy(new_atoms, atoms, len * sizeof(Attribute));
if (atoms) delete[] atoms;
atoms = new_atoms;
}
char *heapify(char *s)
{
char *h = new char[strlen(s) + 1];
strcpy(h, s);
return h;
}
Attribute Atoms::insert_new(const char *name, char attr_type)
{
if (len == max) expand();
char *h = new char[strlen(name) + 2];
strcpy(h + 1, name);
*h = attr_type;
atoms[len++] = h;
return h;
}
Attribute Atoms::insert_attribute(Attribute attr)
{
for (int i = 0; i < len; i++) {
if (strcmp(attr, atoms[i]) == 0) {
return atoms[i];
}
}
return insert_new(attr + 1, attr[0]);
}
Attribute Atoms::insert_string(const char *name)
{
char attr_type = name[strlen(name) - 1];
for (int i = 0; i < len; i++) {
if (attr_type == atoms[i][0] &&
strcmp(name, atoms[i] + 1) == 0) {
return atoms[i];
}
}
return insert_new(name, attr_type);
}
void Parameters::insert_real(Parameters **list, char *name, double r)
{
Parameters_ptr a = new Parameters(*list);
*list = a;
a->parm.set_attr(symbol_table.insert_string(name));
a->parm.r = r;
assert(a->parm.attr_type() == 'r');
}
void Parameters::insert_string(Parameters **list, char *name, char *s)
{
Parameters_ptr a = new Parameters(*list);
*list = a;
a->parm.set_attr(symbol_table.insert_string(name));
// string is deleted when parameter is deleted
a->parm.s = heapify(s);
assert(a->parm.attr_type() == 's');
}
void Parameters::insert_integer(Parameters **list, char *name, long i)
{
Parameters_ptr a = new Parameters(*list);
*list = a;
a->parm.set_attr(symbol_table.insert_string(name));
a->parm.i = i;
assert(a->parm.attr_type() == 'i');
}
void Parameters::insert_logical(Parameters **list, char *name, bool l)
{
Parameters_ptr a = new Parameters(*list);
*list = a;
a->parm.set_attr(symbol_table.insert_string(name));
a->parm.l = l;
assert(a->parm.attr_type() == 'l');
}
void Parameters::insert_atom(Parameters **list, char *name, char *s)
{
Parameters_ptr a = new Parameters(*list);
*list = a;
a->parm.set_attr(symbol_table.insert_string(name));
a->parm.a = symbol_table.insert_string(s);
assert(a->parm.attr_type() == 'a');
}
Parameters *Parameters::remove_key(Parameters **list, char *name)
{
while (*list) {
if (strcmp((*list)->parm.attr_name(), name) == 0) {
Parameters_ptr p = *list;
*list = p->next;
p->next = NULL;
return p; // caller should free this pointer
}
*list = (*list)->next;
}
return NULL;
}
Parameter::~Parameter()
{
if (attr_type() == 's' && s) delete[] s;
}
Allegro_note::~Allegro_note()
{
while (parameters) {
Parameters_ptr to_delete = parameters;
parameters = parameters->next;
delete to_delete;
}
}
void Beats::expand()
{
max = (max + 5); // extra growth for small sizes
max += (max >> 2); // add 25%
Beat_ptr new_beats = new Beat[max];
// now do copy
memcpy(new_beats, beats, len * sizeof(Beat));
if (beats) delete[] beats;
beats = new_beats;
}
void Beats::insert(long i, Beat_ptr beat)
{
assert(i >= 0 && i <= len);
if (max <= len) {
expand();
}
memmove(&beats[i], &beats[i + 1], sizeof(Beat) * (len - i));
memcpy(&beats[i], beat, sizeof(Beat));
len++;
}
long Time_map::locate_time(double time)
{
int i = 0;
while ((i < beats.len) && (time > beats[i].time)) {
i++;
}
return i;
}
long Time_map::locate_beat(double beat)
{
int i = 0;
while (( i < beats.len) && (beat > beats[i].beat)) {
i++;
}
return i;
}
double Time_map::beat_to_time(double beat)
{
Beat_ptr mbi;
Beat_ptr mbi1;
if (beat <= 0) {
return beat;
}
int i = locate_beat(beat);
if (i == beats.len) {
if (last_tempo_flag) {
return beats[i - 1].time +
(beat - beats[i - 1].beat) / last_tempo;
} else if (i == 1) {
return beat * 0.6;
} else {
mbi = &beats[i - 2];
mbi1 = &beats[i - 1];
}
} else {
mbi = &beats[i - 1];
mbi1 = &beats[i];
}
// whether w extrapolate or interpolate, the math is the same
double time_dif = mbi1->time - mbi->time;
double beat_dif = mbi1->beat - mbi->beat;
return mbi->time + (beat - mbi->beat) * time_dif / beat_dif;
}
double Time_map::time_to_beat(double time)
{
Beat_ptr mbi;
Beat_ptr mbi1;
if (time <= 0.0) return time;
int i = locate_time(time);
if (i == beats.len) {
if (last_tempo_flag) {
return beats[i - 1].beat +
(time - beats[i - 1].time) * last_tempo;
} else if (i == 1) {
return time / 0.6;
} else {
mbi = &beats[i - 2];
mbi1 = &beats[i - 1];
}
} else {
mbi = &beats[i - 1];
mbi1 = & beats[i];
}
double time_dif = mbi1->time - mbi->time;
double beat_dif = mbi1->beat - mbi->beat;
return mbi->beat + (time - mbi->time) * beat_dif / time_dif;
}
void Time_sigs::expand()
{
max = (max + 5); // extra growth for small sizes
max += (max >> 2); // add 25%
Time_sig_ptr new_time_sigs = new Time_sig[max];
// now do copy
memcpy(new_time_sigs, time_sigs, len * sizeof(Time_sig));
if (time_sigs) delete[] time_sigs;
time_sigs = new_time_sigs;
}
void Time_sigs::insert(double beat, double num, double den)
{
if (max <= len) {
expand();
}
time_sigs[len].beat = beat;
time_sigs[len].num = num;
time_sigs[len].den = den;
len++;
// find insertion point:
for (int i = 0; i < len; i++) {
if (time_sigs[i].beat > beat) {
// insert event at i
memmove(&time_sigs[i], &time_sigs[i + 1],
sizeof(Time_sig) * (len - i));
time_sigs[i].beat = beat;
time_sigs[i].num = num;
time_sigs[i].den = den;
}
return;
}
}
Seq::~Seq()
{
for (int i = 0; i < notes.len; i++)
delete notes.events[i];
}
long Seq::seek_time(double time)
// find index of first score event after time
{
long i;
for (i = 0; i < notes.len; i++) {
if (notes[i]->time > time) {
break;
}
}
return i;
}
void Seq::convert_to_beats()
// modify all times and durations in notes to beats
{
if (units_are_seconds) {
units_are_seconds = false;
for (long i = 0; i < notes.len; i++) {
Allegro_event_ptr e = notes[i];
double beat = map.time_to_beat(e->time);
if (e->type == 'n') {
Allegro_note_ptr n = (Allegro_note_ptr) e;
n->dur = map.time_to_beat(n->time + n->dur) - beat;
n->time = beat;
}
}
}
}
void Seq::convert_to_seconds()
// modify all times and durations in notes to seconds
{
if (!units_are_seconds) {
units_are_seconds = true;
for (long i = 0; i < notes.len; i++) {
Allegro_event_ptr e = notes[i];
double time = map.beat_to_time(e->time);
if (e->type == 'n') {
Allegro_note_ptr n = (Allegro_note_ptr) e;
n->dur = map.beat_to_time(n->time + n->dur) - time;
n->time = time;
}
}
}
}
bool Seq::insert_beat(double time, double beat)
// insert a time,beat pair
// return true or false (false indicates an error, no update)
// it is an error to imply a negative tempo or to insert at
// a negative time
{
if (time < 0 || beat < 0) return false;
if (time == 0.0 && beat > 0)
time = 0.000001; // avoid infinite tempo, offset time by 1us
if (time == 0.0 && beat == 0.0)
return true; // (0,0) is already in the map!
convert_to_beats(); // beats are invariant when changing tempo
int i = map.locate_time(time); // i is insertion point
if (i < map.beats.len && within(map.beats[i].time, time, 0.000001)) {
// replace beat if time is already in the map
map.beats[i].beat = beat;
} else {
Beat point;
point.beat = beat;
point.time = time;
map.beats.insert(i, &point);
}
// beats[i] contains new beat
// make sure we didn't generate a zero tempo.
// if so, space beats by one microbeat as necessary
long j = i;
while (j < map.beats.len &&
map.beats[j - 1].beat + 0.000001 >= map.beats[j].beat) {
map.beats[j].beat = map.beats[j - 1].beat + 0.000001;
j++;
}
return true;
}
bool Seq::insert_tempo(double tempo, double beat)
{
tempo = tempo / 60.0; // convert to beats per second
// change the tempo at the given beat until the next beat event
if (beat < 0) return false;
convert_to_beats(); // beats are invariant when changing tempo
double time = map.beat_to_time(beat);
long i = map.locate_time(time);
if (i >= map.beats.len || !within(map.beats[i].time, time, 0.000001)) {
insert_beat(time, beat);
}
// now i is index of beat where tempo will change
if (i == map.beats.len - 1) {
map.last_tempo = tempo;
map.last_tempo_flag = true;
} else { // adjust all future beats
// compute the difference in beats
double diff = map.beats[i + 1].beat - map.beats[i].beat;
// convert beat difference to seconds at new tempo
diff = diff /tempo;
// figure out old time difference:
double old_diff = map.beats[i + 1].time - time;
// compute difference too
diff = diff - old_diff;
// apply new_diff to score and beats
while (i < map.beats.len) {
map.beats[i].time = map.beats[i].time + diff;
i++;
}
}
return true;
}
void Seq::add_event(Allegro_event_ptr event)
{
convert_to_seconds();
notes.insert(event);
/*
if (event->type == 'n') {
Allegro_note_ptr n = (Allegro_note_ptr) event;
trace("note %d at %g for %g\n", n->key, n->time, n->dur);
}
*/
}
bool Seq::set_tempo(double tempo, double start_beat, double end_beat)
// set tempo from start_beat to end_beat
{
if (start_beat >= end_beat) return false;
convert_to_beats();
// algorithm: insert a beat event if necessary at start_beat
// and at end_beat
// delete intervening map elements
// change the tempo
insert_beat(map.beat_to_time(start_beat), start_beat);
insert_beat(map.beat_to_time(end_beat), end_beat);
long start_x = map.locate_beat(start_beat) + 1;
long stop_x = map.locate_beat(end_beat) + 1;
while (stop_x < map.beats.len) {
map.beats[start_x] = map.beats[stop_x];
start_x++;
stop_x++;
}
map.beats.len = start_x; // truncate the map to new length
return insert_tempo(tempo, start_beat);
}
void Seq::set_time_sig(double beat, double num, double den)
{
time_sig.insert(beat, num, den);
}
void Seq::beat_to_measure(double beat, long *measure, double *m_beat,
double *num, double *den)
{
// return [measure, beat, num, den]
double m = 0; // measure number
double bpm;
int tsx;
for (tsx = 0; tsx < time_sig.len; tsx++) {
bpm = 4;
// assume 4/4 if no time signature
double prev_beat = 0;
double prev_num = 4;
double prev_den = 4;
if (tsx > 0) {
bpm = time_sig[tsx].num * 4 / time_sig[tsx].den;
prev_beat = time_sig[tsx].beat;
prev_num = time_sig[tsx].num;
prev_den = time_sig[tsx].den;
}
if (time_sig[tsx].beat > beat) {
m = m + (beat - prev_beat) / bpm;
*measure = (long) m;
*m_beat = (m - *measure) * bpm * prev_den * 0.25;
*num = prev_num;
*den = prev_den;
return;
}
// round m up to an integer (but allow for a small
// numerical inaccuracy)
m = m + (long) (0.99 + (time_sig[tsx].beat - prev_beat) / bpm);
}
// if we didn't return yet, compute after last time signature
Time_sig initial(0, 4, 4);
Time_sig_ptr prev = &initial;
if (tsx > 0) { // use last time signature
prev = &time_sig[time_sig.len - 1];
}
bpm = prev->num * 4 / prev->den;
m = m + (beat - prev->beat) / bpm;
*measure = (long) m;
*m_beat = (m - *measure) * bpm * prev->den * 0.25;
*num = prev->num;
*den = prev->den;
}
void Seq::set_events(Allegro_event_ptr *events, long len, long max)
{
convert_to_seconds(); // because notes are in seconds
notes.set_events(events, len, max);
}
// sr_letter_to_type = {"i": 'Integer', "r": 'Real', "s": 'String',
// "l": 'Logical', "a": 'Symbol'}
|