File: allegro.cpp

package info (click to toggle)
audacity 1.2.3-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 22,600 kB
  • ctags: 20,360
  • sloc: ansic: 139,525; cpp: 55,197; sh: 24,963; lisp: 3,772; makefile: 1,679; python: 272
file content (567 lines) | stat: -rwxr-xr-x 14,573 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
// Allegro: music representation system, with
//      extensible in-memory sequence structure
//      upward compatible with MIDI
//      implementations in C++ and Serpent
//      external, text-based representation
//      compatible with Aura

#include "assert.h"
#include "stdlib.h"
#include "allegro.h"
#include "string.h"
//#include "memory.h"
#include "trace.h"

Atoms symbol_table;

bool within(double d1, double d2, double epsilon)
{
    d1 -= d2;
    return d1 < epsilon && d1 > -epsilon;
}


void Events::expand()
{
    max = (max + 5); // extra growth for small sizes
    max += (max >> 2); // add 25%
    Allegro_event_ptr *new_events = new Allegro_event_ptr[max];
    // now do copy
    memcpy(new_events, events, len * sizeof(Allegro_event_ptr));
    if (events) delete[] events;
    events = new_events;
}


Events::~Events()
{
    if (events) {
        delete[] events;
    }
}


void Events::insert(Allegro_event_ptr event)
{
    if (max <= len) {
        expand();
    }
    events[len] = event;
    len++;
    // find insertion point:
    for (int i = 0; i < len; i++) {
        if (events[i]->time > event->time) {
            // insert event at i
            memmove(&events[i + 1], &events[i], 
                    sizeof(Allegro_event_ptr) * (len - i - 1));
            events[i] = event;
            return;
        }
    }
}


void Events::append(Allegro_event_ptr event)
{
    if (max <= len) {
        expand();
    }
    events[len++] = event;
}


void Atoms::expand()
{
    max = (max + 5); // extra growth for small sizes
    max += (max >> 2); // add 25%
    char **new_atoms = new Attribute[max];
    // now do copy
    memcpy(new_atoms, atoms, len * sizeof(Attribute));
    if (atoms) delete[] atoms;
    atoms = new_atoms;
}


char *heapify(char *s)
{
    char *h = new char[strlen(s) + 1];
    strcpy(h, s);
    return h;
}


Attribute Atoms::insert_new(const char *name, char attr_type)
{
    if (len == max) expand();
    char *h = new char[strlen(name) + 2];
    strcpy(h + 1, name);
    *h = attr_type;
    atoms[len++] = h;
    return h;
}


Attribute Atoms::insert_attribute(Attribute attr)
{
    for (int i = 0; i < len; i++) {
        if (strcmp(attr, atoms[i]) == 0) {
            return atoms[i];
        }
    }
    return insert_new(attr + 1, attr[0]);
}


Attribute Atoms::insert_string(const char *name)
{
    char attr_type = name[strlen(name) - 1];
    for (int i = 0; i < len; i++) {
        if (attr_type == atoms[i][0] &&
            strcmp(name, atoms[i] + 1) == 0) {
            return atoms[i];
        }
    }
    return insert_new(name, attr_type);
}


void Parameters::insert_real(Parameters **list, char *name, double r)
{
    Parameters_ptr a = new Parameters(*list);
    *list = a;
    a->parm.set_attr(symbol_table.insert_string(name));
    a->parm.r = r;
    assert(a->parm.attr_type() == 'r');
}


void Parameters::insert_string(Parameters **list, char *name, char *s)
{
    Parameters_ptr a = new Parameters(*list);
    *list = a;
    a->parm.set_attr(symbol_table.insert_string(name));
    // string is deleted when parameter is deleted
    a->parm.s = heapify(s);
    assert(a->parm.attr_type() == 's');
}

void Parameters::insert_integer(Parameters **list, char *name, long i)
{
    Parameters_ptr a = new Parameters(*list);
    *list = a;
    a->parm.set_attr(symbol_table.insert_string(name));
    a->parm.i = i;
    assert(a->parm.attr_type() == 'i');
}

void Parameters::insert_logical(Parameters **list, char *name, bool l)
{
    Parameters_ptr a = new Parameters(*list);
    *list = a;
    a->parm.set_attr(symbol_table.insert_string(name));
    a->parm.l = l;
    assert(a->parm.attr_type() == 'l');
}

void Parameters::insert_atom(Parameters **list, char *name, char *s)
{
    Parameters_ptr a = new Parameters(*list);
    *list = a;
    a->parm.set_attr(symbol_table.insert_string(name));
    a->parm.a = symbol_table.insert_string(s);
    assert(a->parm.attr_type() == 'a');
}


Parameters *Parameters::remove_key(Parameters **list, char *name)
{
    while (*list) {
        if (strcmp((*list)->parm.attr_name(), name) == 0) {
            Parameters_ptr p = *list;
            *list = p->next;
            p->next = NULL;
            return p; // caller should free this pointer
        }
        *list = (*list)->next;
    }
    return NULL;
}


Parameter::~Parameter()
{
    if (attr_type() == 's' && s) delete[] s;
}


Allegro_note::~Allegro_note()
{
    while (parameters) {
        Parameters_ptr to_delete = parameters;
        parameters = parameters->next;
        delete to_delete;
    }
}


void Beats::expand()
{
    max = (max + 5); // extra growth for small sizes
    max += (max >> 2); // add 25%
    Beat_ptr new_beats = new Beat[max];
    // now do copy
    memcpy(new_beats, beats, len * sizeof(Beat));
    if (beats) delete[] beats;
    beats = new_beats;
}


void Beats::insert(long i, Beat_ptr beat)
{
    assert(i >= 0 && i <= len);
    if (max <= len) {
        expand();
    }
    memmove(&beats[i], &beats[i + 1], sizeof(Beat) * (len - i));
    memcpy(&beats[i], beat, sizeof(Beat));
    len++;
}




long Time_map::locate_time(double time)
{
    int i = 0;
    while ((i < beats.len) && (time > beats[i].time)) {
        i++;
    }
    return i;
}


long Time_map::locate_beat(double beat)
{
    int i = 0;
    while (( i < beats.len) && (beat > beats[i].beat)) {
        i++;
    }
    return i;
}


double Time_map::beat_to_time(double beat)
{
    Beat_ptr mbi;
    Beat_ptr mbi1;
    if (beat <= 0) {
        return beat;
    }
    int i = locate_beat(beat);
    if (i == beats.len) {
        if (last_tempo_flag) {
            return beats[i - 1].time + 
                   (beat - beats[i - 1].beat) / last_tempo;
        } else if (i == 1) {
            return beat * 0.6;
        } else {
            mbi = &beats[i - 2];
            mbi1 = &beats[i - 1];
        }
    } else {
        mbi = &beats[i - 1];
        mbi1 = &beats[i];
    }
    // whether w extrapolate or interpolate, the math is the same
    double time_dif = mbi1->time - mbi->time;
    double beat_dif = mbi1->beat - mbi->beat;
    return mbi->time + (beat - mbi->beat) * time_dif / beat_dif;
}


double Time_map::time_to_beat(double time)
{
    Beat_ptr mbi;
    Beat_ptr mbi1;
    if (time <= 0.0) return time;
    int i = locate_time(time);
    if (i == beats.len) {
        if (last_tempo_flag) {
            return beats[i - 1].beat + 
                   (time - beats[i - 1].time) * last_tempo;
        } else if (i == 1) {
            return time / 0.6;
        } else {
            mbi = &beats[i - 2];
            mbi1 = &beats[i - 1];
        }
    } else {
        mbi = &beats[i - 1];
        mbi1 = & beats[i];
    }
    double time_dif = mbi1->time - mbi->time;
    double beat_dif = mbi1->beat - mbi->beat;
    return mbi->beat + (time - mbi->time) * beat_dif / time_dif;
}
         

void Time_sigs::expand()
{
    max = (max + 5); // extra growth for small sizes
    max += (max >> 2); // add 25%
    Time_sig_ptr new_time_sigs = new Time_sig[max];
    // now do copy
    memcpy(new_time_sigs, time_sigs, len * sizeof(Time_sig));
    if (time_sigs) delete[] time_sigs;
    time_sigs = new_time_sigs;
}


void Time_sigs::insert(double beat, double num, double den)
{
    if (max <= len) {
        expand();
    }
    time_sigs[len].beat = beat;
    time_sigs[len].num = num;
    time_sigs[len].den = den;
    len++;
    // find insertion point:
    for (int i = 0; i < len; i++) {
        if (time_sigs[i].beat > beat) {
            // insert event at i
            memmove(&time_sigs[i], &time_sigs[i + 1], 
                    sizeof(Time_sig) * (len - i));
            time_sigs[i].beat = beat;
            time_sigs[i].num = num;
            time_sigs[i].den = den;
        }
        return;
    }
}


Seq::~Seq()
{
    for (int i = 0; i < notes.len; i++)
        delete notes.events[i];
}


long Seq::seek_time(double time)
// find index of first score event after time
{
    long i;

    for (i = 0; i < notes.len; i++) {
        if (notes[i]->time > time) {
            break;
        }
    }
    return i;
}


void Seq::convert_to_beats()
// modify all times and durations in notes to beats
{
    if (units_are_seconds) {
        units_are_seconds = false;
        for (long i = 0; i < notes.len; i++) {
            Allegro_event_ptr e = notes[i];
            double beat = map.time_to_beat(e->time);
            if (e->type == 'n') {
                Allegro_note_ptr n = (Allegro_note_ptr) e;
                n->dur = map.time_to_beat(n->time + n->dur) - beat;
                n->time = beat;
            }
        }
    }
}


void Seq::convert_to_seconds()
// modify all times and durations in notes to seconds
{
    if (!units_are_seconds) {
        units_are_seconds = true;
        for (long i = 0; i < notes.len; i++) {
            Allegro_event_ptr e = notes[i];
            double time = map.beat_to_time(e->time);
            if (e->type == 'n') {
                Allegro_note_ptr n = (Allegro_note_ptr) e;
                n->dur = map.beat_to_time(n->time + n->dur) - time;
                n->time = time;
            }
        }
    }
}


bool Seq::insert_beat(double time, double beat)
// insert a time,beat pair
// return true or false (false indicates an error, no update)
// it is an error to imply a negative tempo or to insert at
// a negative time
{
    if (time < 0 || beat < 0) return false;
    if (time == 0.0 && beat > 0)
        time = 0.000001; // avoid infinite tempo, offset time by 1us
    if (time == 0.0 && beat == 0.0)
        return true; // (0,0) is already in the map!
    convert_to_beats(); // beats are invariant when changing tempo
    int i = map.locate_time(time); // i is insertion point
    if (i < map.beats.len && within(map.beats[i].time, time, 0.000001)) {
        // replace beat if time is already in the map
        map.beats[i].beat = beat;
    } else {
        Beat point;
        point.beat = beat;
        point.time = time;
        map.beats.insert(i, &point);
    }
    // beats[i] contains new beat
    // make sure we didn't generate a zero tempo.
    // if so, space beats by one microbeat as necessary
    long j = i;
    while (j < map.beats.len &&
        map.beats[j - 1].beat + 0.000001 >= map.beats[j].beat) {
        map.beats[j].beat = map.beats[j - 1].beat + 0.000001;
        j++;
    }
    return true;
}


bool Seq::insert_tempo(double tempo, double beat)
{
    tempo = tempo / 60.0; // convert to beats per second
    // change the tempo at the given beat until the next beat event
    if (beat < 0) return false;
    convert_to_beats(); // beats are invariant when changing tempo
    double time = map.beat_to_time(beat);
    long i = map.locate_time(time);
    if (i >= map.beats.len || !within(map.beats[i].time, time, 0.000001)) {
        insert_beat(time, beat);
    }
    // now i is index of beat where tempo will change
    if (i == map.beats.len - 1) {
        map.last_tempo = tempo;
        map.last_tempo_flag = true;
    } else { // adjust all future beats
        // compute the difference in beats
        double diff = map.beats[i + 1].beat - map.beats[i].beat;
        // convert beat difference to seconds at new tempo
        diff = diff /tempo;
        // figure out old time difference:
        double old_diff = map.beats[i + 1].time - time;
        // compute difference too
        diff = diff - old_diff;
        // apply new_diff to score and beats
        while (i < map.beats.len) {
            map.beats[i].time = map.beats[i].time + diff;
            i++;
        }
    }
    return true;
}


void Seq::add_event(Allegro_event_ptr event)
{
    convert_to_seconds();
    notes.insert(event);
/*
    if (event->type == 'n') {
        Allegro_note_ptr n = (Allegro_note_ptr) event;
        trace("note %d at %g for %g\n", n->key, n->time, n->dur);
    }
 */
}


bool Seq::set_tempo(double tempo, double start_beat, double end_beat)
// set tempo from start_beat to end_beat
{
    if (start_beat >= end_beat) return false;
    convert_to_beats();
    // algorithm: insert a beat event if necessary at start_beat
    //    and at end_beat
    // delete intervening map elements
    // change the tempo
    insert_beat(map.beat_to_time(start_beat), start_beat);
    insert_beat(map.beat_to_time(end_beat), end_beat);
    long start_x = map.locate_beat(start_beat) + 1;
    long stop_x = map.locate_beat(end_beat) + 1;
    while (stop_x < map.beats.len) {
        map.beats[start_x] = map.beats[stop_x];
        start_x++;
        stop_x++;
    }
    map.beats.len = start_x; // truncate the map to new length
    return insert_tempo(tempo, start_beat);
}


void Seq::set_time_sig(double beat, double num, double den)
{
    time_sig.insert(beat, num, den);
}


void Seq::beat_to_measure(double beat, long *measure, double *m_beat,
                          double *num, double *den)
{
    // return [measure, beat, num, den]
    double m = 0; // measure number
    double bpm;
    int tsx;

    for (tsx = 0; tsx < time_sig.len; tsx++) {
        bpm = 4;
        // assume 4/4 if no time signature
        double prev_beat = 0;
        double prev_num = 4;
        double prev_den = 4;
        if (tsx > 0) {
            bpm = time_sig[tsx].num * 4 / time_sig[tsx].den;
            prev_beat = time_sig[tsx].beat;
            prev_num = time_sig[tsx].num;
            prev_den = time_sig[tsx].den;
        }
        if (time_sig[tsx].beat > beat) {
            m = m + (beat - prev_beat) / bpm;
            *measure = (long) m;
            *m_beat = (m - *measure) * bpm * prev_den * 0.25;
            *num = prev_num;
            *den = prev_den;
            return;
        }
        // round m up to an integer (but allow for a small
        // numerical inaccuracy)
        m = m + (long) (0.99 + (time_sig[tsx].beat - prev_beat) / bpm);
    }
    // if we didn't return yet, compute after last time signature
    Time_sig initial(0, 4, 4);
    Time_sig_ptr prev = &initial;
    if (tsx > 0) { // use last time signature
        prev = &time_sig[time_sig.len - 1];
    }
    bpm = prev->num * 4 / prev->den;
    m = m + (beat - prev->beat) / bpm;
    *measure = (long) m;
    *m_beat = (m - *measure) * bpm * prev->den * 0.25;
    *num = prev->num;
    *den = prev->den;
}


void Seq::set_events(Allegro_event_ptr *events, long len, long max)
{
    convert_to_seconds(); // because notes are in seconds
    notes.set_events(events, len, max);
}


// sr_letter_to_type = {"i": 'Integer', "r": 'Real', "s": 'String',
//                     "l": 'Logical', "a": 'Symbol'}