1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#ifdef WIN32
#include <sys\time.h>
#else
#include <sys/time.h>
#endif
#define PI 3.14159265359
#define MAXPOW 24
struct complex
{
double r;
double i;
};
int pow_2[MAXPOW];
int pow_4[MAXPOW];
void twiddle(struct complex *W, int N, double stuff)
{
W->r=cos(stuff*2.0*PI/(double)N);
W->i=-sin(stuff*2.0*PI/(double)N);
}
void bit_reverse_reorder(struct complex *W, int N)
{
int bits, i, j, k;
double tempr, tempi;
for (i=0; i<MAXPOW; i++)
if (pow_2[i]==N) bits=i;
for (i=0; i<N; i++)
{
j=0;
for (k=0; k<bits; k++)
if (i&pow_2[k]) j+=pow_2[bits-k-1];
if (j>i) /** Only make "up" swaps */
{
tempr=W[i].r;
tempi=W[i].i;
W[i].r=W[j].r;
W[i].i=W[j].i;
W[j].r=tempr;
W[j].i=tempi;
}
}
}
void bit_r4_reorder(struct complex *W, int N)
{
int bits, i, j, k;
double tempr, tempi;
for (i=0; i<MAXPOW; i++)
if (pow_2[i]==N) bits=i;
for (i=0; i<N; i++)
{
j=0;
for (k=0; k<bits; k+=2)
{
if (i&pow_2[k]) j+=pow_2[bits-k-2];
if (i&pow_2[k+1]) j+=pow_2[bits-k-1];
}
if (j>i) /** Only make "up" swaps */
{
tempr=W[i].r;
tempi=W[i].i;
W[i].r=W[j].r;
W[i].i=W[j].i;
W[j].r=tempr;
W[j].i=tempi;
}
}
}
/** RADIX-4 FFT ALGORITHM */
void radix4(struct complex *x, int N)
{
int n2, k1, N1, N2;
struct complex W, bfly[4];
N1=4;
N2=N/4;
/** Do 4 Point DFT */
for (n2=0; n2<N2; n2++)
{
/** Don't hurt the butterfly */
bfly[0].r = (x[n2].r + x[N2 + n2].r + x[2*N2+n2].r + x[3*N2+n2].r);
bfly[0].i = (x[n2].i + x[N2 + n2].i + x[2*N2+n2].i + x[3*N2+n2].i);
bfly[1].r = (x[n2].r + x[N2 + n2].i - x[2*N2+n2].r - x[3*N2+n2].i);
bfly[1].i = (x[n2].i - x[N2 + n2].r - x[2*N2+n2].i + x[3*N2+n2].r);
bfly[2].r = (x[n2].r - x[N2 + n2].r + x[2*N2+n2].r - x[3*N2+n2].r);
bfly[2].i = (x[n2].i - x[N2 + n2].i + x[2*N2+n2].i - x[3*N2+n2].i);
bfly[3].r = (x[n2].r - x[N2 + n2].i - x[2*N2+n2].r + x[3*N2+n2].i);
bfly[3].i = (x[n2].i + x[N2 + n2].r - x[2*N2+n2].i - x[3*N2+n2].r);
/** In-place results */
for (k1=0; k1<N1; k1++)
{
twiddle(&W, N, (double)k1*(double)n2);
x[n2 + N2*k1].r = bfly[k1].r*W.r - bfly[k1].i*W.i;
x[n2 + N2*k1].i = bfly[k1].i*W.r + bfly[k1].r*W.i;
}
}
/** Don't recurse if we're down to one butterfly */
if (N2!=1)
for (k1=0; k1<N1; k1++)
{
radix4(&x[N2*k1], N2);
}
}
/** RADIX-2 FFT ALGORITHM */
void radix2(struct complex *data, int N)
{
int n2, k1, N1, N2;
struct complex W, bfly[2];
N1=2;
N2=N/2;
/** Do 2 Point DFT */
for (n2=0; n2<N2; n2++)
{
/** Don't hurt the butterfly */
twiddle(&W, N, (double)n2);
bfly[0].r = (data[n2].r + data[N2 + n2].r);
bfly[0].i = (data[n2].i + data[N2 + n2].i);
bfly[1].r = (data[n2].r - data[N2 + n2].r) * W.r -
((data[n2].i - data[N2 + n2].i) * W.i);
bfly[1].i = (data[n2].i - data[N2 + n2].i) * W.r +
((data[n2].r - data[N2 + n2].r) * W.i);
/** In-place results */
for (k1=0; k1<N1; k1++)
{
data[n2 + N2*k1].r = bfly[k1].r;
data[n2 + N2*k1].i = bfly[k1].i;
}
}
/** Don't recurse if we're down to one butterfly */
if (N2!=1)
for (k1=0; k1<N1; k1++)
radix2(&data[N2*k1], N2);
}
void main(int argc, char *argv[])
{
FILE *infile;
int N, radix, numsamp;
int i;
struct complex *data;
double freq, phase, fs, A;
int dotime;
struct timeval start, end;
long totaltime;
#ifdef GEN
if (argc!=9)
{
printf("usage:\n");
printf(" fft [A] [f] [phase] [fs] [num samp] [sequence length] [radix] [time]\n");
printf(" output: DFT\n");
exit(1);
}
sscanf(argv[1], "%lf", &A);
sscanf(argv[2], "%lf", &freq);
sscanf(argv[3], "%lf", &phase);
sscanf(argv[4], "%lf", &fs);
sscanf(argv[5], "%d", &numsamp);
sscanf(argv[6], "%d", &N);
sscanf(argv[7], "%d", &radix);
sscanf(argv[8], "%d", &dotime);
#endif
#ifndef GEN
if (argc<4)
{
printf("usage:\n");
printf(" fft [input file] [sequence length] [radix]\n");
printf(" output: DFT\n");
exit(1);
}
else if ((infile=fopen(argv[1], "r"))==NULL)
{
printf("Error reading input sequence file: %s\n", argv[1]);
exit(1);
}
sscanf(argv[2], "%d", &N);
sscanf(argv[3], "%d", &radix);
dotime=0;
#endif
/** Set up power of two arrays */
pow_2[0]=1;
for (i=1; i<MAXPOW; i++)
pow_2[i]=pow_2[i-1]*2;
pow_4[0]=1;
for (i=1; i<MAXPOW; i++)
pow_4[i]=pow_4[i-1]*4;
if ((data=malloc(sizeof(struct complex)*(size_t)N))==NULL)
{
fprintf(stderr, "Out of memory!\n");
exit(1);
}
/** Generate cosine **/
#ifdef GEN
for (i=0; i<N; i++)
{
data[i].r=0.0;
data[i].i=0.0;
}
for (i=0; i<numsamp; i++)
data[i].r=A*cos(2.0*PI*freq*i/fs - phase*PI/180);
#endif
#ifndef GEN
for (i=0; i<N; i++)
{
fscanf(infile, "%lf", &data[i].r);
data[i].i=0.0;
}
#endif
gettimeofday(&start, (struct timezone *) 0);
if (radix==2) radix2(data, N);
if (radix==4) radix4(data, N);
gettimeofday(&end, (struct timezone *) 0);
totaltime=(end.tv_sec*1000000 + end.tv_usec)-(start.tv_sec*1000000
+ start.tv_usec);
if (radix==2) bit_reverse_reorder(data, N);
if (radix==4) bit_r4_reorder(data, N);
if (!dotime)
for (i=0; i<N; i++)
printf("%f\n", sqrt(data[i].r*data[i].r +
data[i].i*data[i].i));
else
printf("%ld us\n\n", totaltime);
#ifndef GEN
fclose(infile);
#endif
}
|