1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "abs.h"
void abs_free();
typedef struct abs_susp_struct {
snd_susp_node susp;
long terminate_cnt;
boolean logically_stopped;
sound_type input;
long input_cnt;
sample_block_values_type input_ptr;
} abs_susp_node, *abs_susp_type;
void abs_s_fetch(register abs_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register sample_type input_scale_reg = susp->input->scale;
register sample_block_values_type input_ptr_reg;
falloc_sample_block(out, "abs_s_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the input input sample block: */
susp_check_term_log_samples(input, input_ptr, input_cnt);
togo = MIN(togo, susp->input_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
input_ptr_reg = susp->input_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
{ sample_type s = (input_scale_reg * *input_ptr_reg++); sample_type o = s; if (o < 0.0) o = -o; *out_ptr_reg++ = o; };
} while (--n); /* inner loop */
/* using input_ptr_reg is a bad idea on RS/6000: */
susp->input_ptr += togo;
out_ptr += togo;
susp_took(input_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* abs_s_fetch */
void abs_toss_fetch(susp, snd_list)
register abs_susp_type susp;
snd_list_type snd_list;
{
long final_count = susp->susp.toss_cnt;
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from input up to final_time for this block of zeros */
while ((round((final_time - susp->input->t0) * susp->input->sr)) >=
susp->input->current)
susp_get_samples(input, input_ptr, input_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = round((final_time - susp->input->t0) * susp->input->sr -
(susp->input->current - susp->input_cnt));
susp->input_ptr += n;
susp_took(input_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(susp, snd_list);
}
void abs_mark(abs_susp_type susp)
{
sound_xlmark(susp->input);
}
void abs_free(abs_susp_type susp)
{
sound_unref(susp->input);
ffree_generic(susp, sizeof(abs_susp_node), "abs_free");
}
void abs_print_tree(abs_susp_type susp, int n)
{
indent(n);
stdputstr("input:");
sound_print_tree_1(susp->input, n);
}
sound_type snd_make_abs(sound_type input)
{
register abs_susp_type susp;
rate_type sr = input->sr;
time_type t0 = input->t0;
int interp_desc = 0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
falloc_generic(susp, abs_susp_node, "snd_make_abs");
susp->susp.fetch = abs_s_fetch;
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < input->t0) sound_prepend_zeros(input, t0);
/* minimum start time over all inputs: */
t0_min = MIN(input->t0, t0);
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = abs_toss_fetch;
}
/* initialize susp state */
susp->susp.free = abs_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = abs_mark;
susp->susp.print_tree = abs_print_tree;
susp->susp.name = "abs";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(input);
susp->susp.current = 0;
susp->input = input;
susp->input_cnt = 0;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_abs(sound_type input)
{
sound_type input_copy = sound_copy(input);
return snd_make_abs(input_copy);
}
|