1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
|
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "buzz.h"
void buzz_free();
typedef struct buzz_susp_struct {
snd_susp_node susp;
boolean started;
long terminate_cnt;
boolean logically_stopped;
sound_type s_fm;
long s_fm_cnt;
sample_block_values_type s_fm_ptr;
/* support for interpolation of s_fm */
sample_type s_fm_x1_sample;
double s_fm_pHaSe;
double s_fm_pHaSe_iNcR;
/* support for ramp between samples of s_fm */
double output_per_s_fm;
long s_fm_n;
double ph_incr;
float n_2_r;
float n_2_p1;
double phase;
} buzz_susp_node, *buzz_susp_type;
#include "sine.h"
void buzz_s_fetch(register buzz_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double ph_incr_reg;
register float n_2_r_reg;
register float n_2_p1_reg;
register double phase_reg;
register sample_type s_fm_scale_reg = susp->s_fm->scale;
register sample_block_values_type s_fm_ptr_reg;
falloc_sample_block(out, "buzz_s_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the s_fm input sample block: */
susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt);
togo = MIN(togo, susp->s_fm_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
ph_incr_reg = susp->ph_incr;
n_2_r_reg = susp->n_2_r;
n_2_p1_reg = susp->n_2_p1;
phase_reg = susp->phase;
s_fm_ptr_reg = susp->s_fm_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
long table_index;
double x1;
sample_type num, denom, samp;
table_index = (long) phase_reg;
x1 = sine_table[table_index];
denom = (sample_type) (x1 + (phase_reg - table_index) *
(sine_table[table_index + 1] - x1));
if (denom < 0.001 && denom > -0.005) {
samp = 1.0F;
} else {
double phn2p1 = phase_reg * n_2_p1_reg * (1.0/SINE_TABLE_LEN);
phn2p1 = (phn2p1 - (long) phn2p1) * SINE_TABLE_LEN;
table_index = (long) phn2p1;
x1 = sine_table[table_index];
num = (sample_type) (x1 + (phn2p1 - table_index) *
(sine_table[table_index + 1] - x1));
samp = ((num / denom) - 1.0F) * n_2_r_reg;
}
*out_ptr_reg++ = samp;
phase_reg += ph_incr_reg + (s_fm_scale_reg * *s_fm_ptr_reg++);
while (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN;
/* watch out for negative frequencies! */
while (phase_reg < 0) phase_reg += SINE_TABLE_LEN;
} while (--n); /* inner loop */
susp->phase = phase_reg;
/* using s_fm_ptr_reg is a bad idea on RS/6000: */
susp->s_fm_ptr += togo;
out_ptr += togo;
susp_took(s_fm_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* buzz_s_fetch */
void buzz_i_fetch(register buzz_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double ph_incr_reg;
register float n_2_r_reg;
register float n_2_p1_reg;
register double phase_reg;
register double s_fm_pHaSe_iNcR_rEg = susp->s_fm_pHaSe_iNcR;
register double s_fm_pHaSe_ReG;
register sample_type s_fm_x1_sample_reg;
falloc_sample_block(out, "buzz_i_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt);
susp->s_fm_x1_sample = susp_fetch_sample(s_fm, s_fm_ptr, s_fm_cnt);
}
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
ph_incr_reg = susp->ph_incr;
n_2_r_reg = susp->n_2_r;
n_2_p1_reg = susp->n_2_p1;
phase_reg = susp->phase;
s_fm_pHaSe_ReG = susp->s_fm_pHaSe;
s_fm_x1_sample_reg = susp->s_fm_x1_sample;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
long table_index;
double x1;
sample_type num, denom, samp;
if (s_fm_pHaSe_ReG >= 1.0) {
/* fixup-depends s_fm */
/* pick up next sample as s_fm_x1_sample: */
susp->s_fm_ptr++;
susp_took(s_fm_cnt, 1);
s_fm_pHaSe_ReG -= 1.0;
susp_check_term_log_samples_break(s_fm, s_fm_ptr, s_fm_cnt, s_fm_x1_sample_reg);
s_fm_x1_sample_reg = susp_current_sample(s_fm, s_fm_ptr);
}
table_index = (long) phase_reg;
x1 = sine_table[table_index];
denom = (sample_type) (x1 + (phase_reg - table_index) *
(sine_table[table_index + 1] - x1));
if (denom < 0.001 && denom > -0.005) {
samp = 1.0F;
} else {
double phn2p1 = phase_reg * n_2_p1_reg * (1.0/SINE_TABLE_LEN);
phn2p1 = (phn2p1 - (long) phn2p1) * SINE_TABLE_LEN;
table_index = (long) phn2p1;
x1 = sine_table[table_index];
num = (sample_type) (x1 + (phn2p1 - table_index) *
(sine_table[table_index + 1] - x1));
samp = ((num / denom) - 1.0F) * n_2_r_reg;
}
*out_ptr_reg++ = samp;
phase_reg += ph_incr_reg + s_fm_x1_sample_reg;
while (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN;
/* watch out for negative frequencies! */
while (phase_reg < 0) phase_reg += SINE_TABLE_LEN;
s_fm_pHaSe_ReG += s_fm_pHaSe_iNcR_rEg;
} while (--n); /* inner loop */
togo -= n;
susp->phase = phase_reg;
susp->s_fm_pHaSe = s_fm_pHaSe_ReG;
susp->s_fm_x1_sample = s_fm_x1_sample_reg;
out_ptr += togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* buzz_i_fetch */
void buzz_r_fetch(register buzz_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
sample_type s_fm_val;
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double ph_incr_reg;
register float n_2_r_reg;
register float n_2_p1_reg;
register double phase_reg;
falloc_sample_block(out, "buzz_r_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp->s_fm_pHaSe = 1.0;
}
susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt);
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* grab next s_fm_x1_sample when phase goes past 1.0; */
/* use s_fm_n (computed below) to avoid roundoff errors: */
if (susp->s_fm_n <= 0) {
susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt);
susp->s_fm_x1_sample = susp_fetch_sample(s_fm, s_fm_ptr, s_fm_cnt);
susp->s_fm_pHaSe -= 1.0;
/* s_fm_n gets number of samples before phase exceeds 1.0: */
susp->s_fm_n = (long) ((1.0 - susp->s_fm_pHaSe) *
susp->output_per_s_fm);
}
togo = MIN(togo, susp->s_fm_n);
s_fm_val = susp->s_fm_x1_sample;
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
ph_incr_reg = susp->ph_incr;
n_2_r_reg = susp->n_2_r;
n_2_p1_reg = susp->n_2_p1;
phase_reg = susp->phase;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
long table_index;
double x1;
sample_type num, denom, samp;
table_index = (long) phase_reg;
x1 = sine_table[table_index];
denom = (sample_type) (x1 + (phase_reg - table_index) *
(sine_table[table_index + 1] - x1));
if (denom < 0.001 && denom > -0.005) {
samp = 1.0F;
} else {
double phn2p1 = phase_reg * n_2_p1_reg * (1.0/SINE_TABLE_LEN);
phn2p1 = (phn2p1 - (long) phn2p1) * SINE_TABLE_LEN;
table_index = (long) phn2p1;
x1 = sine_table[table_index];
num = (sample_type) (x1 + (phn2p1 - table_index) *
(sine_table[table_index + 1] - x1));
samp = ((num / denom) - 1.0F) * n_2_r_reg;
}
*out_ptr_reg++ = samp;
phase_reg += ph_incr_reg + s_fm_val;
while (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN;
/* watch out for negative frequencies! */
while (phase_reg < 0) phase_reg += SINE_TABLE_LEN;
} while (--n); /* inner loop */
susp->phase = phase_reg;
out_ptr += togo;
susp->s_fm_pHaSe += togo * susp->s_fm_pHaSe_iNcR;
susp->s_fm_n -= togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* buzz_r_fetch */
void buzz_toss_fetch(susp, snd_list)
register buzz_susp_type susp;
snd_list_type snd_list;
{
long final_count = susp->susp.toss_cnt;
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from s_fm up to final_time for this block of zeros */
while ((round((final_time - susp->s_fm->t0) * susp->s_fm->sr)) >=
susp->s_fm->current)
susp_get_samples(s_fm, s_fm_ptr, s_fm_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = round((final_time - susp->s_fm->t0) * susp->s_fm->sr -
(susp->s_fm->current - susp->s_fm_cnt));
susp->s_fm_ptr += n;
susp_took(s_fm_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(susp, snd_list);
}
void buzz_mark(buzz_susp_type susp)
{
sound_xlmark(susp->s_fm);
}
void buzz_free(buzz_susp_type susp)
{
sound_unref(susp->s_fm);
ffree_generic(susp, sizeof(buzz_susp_node), "buzz_free");
}
void buzz_print_tree(buzz_susp_type susp, int n)
{
indent(n);
stdputstr("s_fm:");
sound_print_tree_1(susp->s_fm, n);
}
sound_type snd_make_buzz(long n, rate_type sr, double hz, time_type t0, sound_type s_fm)
{
register buzz_susp_type susp;
/* sr specified as input parameter */
/* t0 specified as input parameter */
int interp_desc = 0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
falloc_generic(susp, buzz_susp_node, "snd_make_buzz");
susp->ph_incr = 0;
susp->n_2_r = 1.0F / (n * 2);
susp->n_2_p1 = (float) ((n * 2) + 1);
susp->phase = compute_phase(PI*0.5, 69.0, SINE_TABLE_LEN,
SINE_TABLE_LEN * 440.0, sr, hz, &susp->ph_incr);
s_fm->scale *= hz != 0 ? (sample_type) (susp->ph_incr / hz)
: (sample_type) (SINE_TABLE_LEN / sr);
/* select a susp fn based on sample rates */
interp_desc = (interp_desc << 2) + interp_style(s_fm, sr);
switch (interp_desc) {
case INTERP_n: /* handled below */
case INTERP_s: susp->susp.fetch = buzz_s_fetch; break;
case INTERP_i: susp->susp.fetch = buzz_i_fetch; break;
case INTERP_r: susp->susp.fetch = buzz_r_fetch; break;
default: snd_badsr(); break;
}
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < s_fm->t0) sound_prepend_zeros(s_fm, t0);
/* minimum start time over all inputs: */
t0_min = MIN(s_fm->t0, t0);
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = buzz_toss_fetch;
}
/* initialize susp state */
susp->susp.free = buzz_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = buzz_mark;
susp->susp.print_tree = buzz_print_tree;
susp->susp.name = "buzz";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s_fm);
susp->started = false;
susp->susp.current = 0;
susp->s_fm = s_fm;
susp->s_fm_cnt = 0;
susp->s_fm_pHaSe = 0.0;
susp->s_fm_pHaSe_iNcR = s_fm->sr / sr;
susp->s_fm_n = 0;
susp->output_per_s_fm = sr / s_fm->sr;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_buzz(long n, rate_type sr, double hz, time_type t0, sound_type s_fm)
{
sound_type s_fm_copy = sound_copy(s_fm);
return snd_make_buzz(n, sr, hz, t0, s_fm_copy);
}
|