File: buzz.c

package info (click to toggle)
audacity 1.2.4b-2.1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 24,136 kB
  • ctags: 20,445
  • sloc: ansic: 139,567; cpp: 55,998; sh: 24,963; lisp: 3,772; makefile: 1,683; python: 272
file content (536 lines) | stat: -rw-r--r-- 16,929 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"

#include "falloc.h"
#include "cext.h"
#include "buzz.h"

void buzz_free();


typedef struct buzz_susp_struct {
    snd_susp_node susp;
    boolean started;
    long terminate_cnt;
    boolean logically_stopped;
    sound_type s_fm;
    long s_fm_cnt;
    sample_block_values_type s_fm_ptr;

    /* support for interpolation of s_fm */
    sample_type s_fm_x1_sample;
    double s_fm_pHaSe;
    double s_fm_pHaSe_iNcR;

    /* support for ramp between samples of s_fm */
    double output_per_s_fm;
    long s_fm_n;

    double ph_incr;
    float n_2_r;
    float n_2_p1;
    double phase;
} buzz_susp_node, *buzz_susp_type;


#include "sine.h"


void buzz_s_fetch(register buzz_susp_type susp, snd_list_type snd_list)
{
    int cnt = 0; /* how many samples computed */
    int togo;
    int n;
    sample_block_type out;
    register sample_block_values_type out_ptr;

    register sample_block_values_type out_ptr_reg;

    register double ph_incr_reg;
    register float n_2_r_reg;
    register float n_2_p1_reg;
    register double phase_reg;
    register sample_type s_fm_scale_reg = susp->s_fm->scale;
    register sample_block_values_type s_fm_ptr_reg;
    falloc_sample_block(out, "buzz_s_fetch");
    out_ptr = out->samples;
    snd_list->block = out;

    while (cnt < max_sample_block_len) { /* outer loop */
	/* first compute how many samples to generate in inner loop: */
	/* don't overflow the output sample block: */
	togo = max_sample_block_len - cnt;

	/* don't run past the s_fm input sample block: */
	susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt);
	togo = MIN(togo, susp->s_fm_cnt);

	/* don't run past terminate time */
	if (susp->terminate_cnt != UNKNOWN &&
	    susp->terminate_cnt <= susp->susp.current + cnt + togo) {
	    togo = susp->terminate_cnt - (susp->susp.current + cnt);
	    if (togo == 0) break;
	}


	/* don't run past logical stop time */
	if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
	    int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
	    /* break if to_stop == 0 (we're at the logical stop)
	     * AND cnt > 0 (we're not at the beginning of the
	     * output block).
	     */
	    if (to_stop < togo) {
		if (to_stop == 0) {
		    if (cnt) {
			togo = 0;
			break;
		    } else /* keep togo as is: since cnt == 0, we
		            * can set the logical stop flag on this
		            * output block
		            */
			susp->logically_stopped = true;
		} else /* limit togo so we can start a new
		        * block at the LST
		        */
		    togo = to_stop;
	    }
	}

	n = togo;
	ph_incr_reg = susp->ph_incr;
	n_2_r_reg = susp->n_2_r;
	n_2_p1_reg = susp->n_2_p1;
	phase_reg = susp->phase;
	s_fm_ptr_reg = susp->s_fm_ptr;
	out_ptr_reg = out_ptr;
	if (n) do { /* the inner sample computation loop */
	    long table_index;
            double x1;
            sample_type num, denom, samp;

            table_index = (long) phase_reg;
            x1 = sine_table[table_index];
            denom = (sample_type) (x1 + (phase_reg - table_index) * 
                          (sine_table[table_index + 1] - x1));
            if (denom < 0.001 && denom > -0.005) {
                samp = 1.0F;
            } else {
                double phn2p1 = phase_reg * n_2_p1_reg * (1.0/SINE_TABLE_LEN);
                phn2p1 = (phn2p1 - (long) phn2p1) * SINE_TABLE_LEN;
                table_index = (long) phn2p1;
                x1 = sine_table[table_index];
                num = (sample_type) (x1 + (phn2p1 - table_index) *
                        (sine_table[table_index + 1] - x1));
                samp = ((num / denom) - 1.0F) * n_2_r_reg;
            }
            *out_ptr_reg++ = samp;
            phase_reg += ph_incr_reg + (s_fm_scale_reg * *s_fm_ptr_reg++);
            while (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN;
            /* watch out for negative frequencies! */
            while (phase_reg < 0) phase_reg += SINE_TABLE_LEN;
	} while (--n); /* inner loop */

	susp->phase = phase_reg;
	/* using s_fm_ptr_reg is a bad idea on RS/6000: */
	susp->s_fm_ptr += togo;
	out_ptr += togo;
	susp_took(s_fm_cnt, togo);
	cnt += togo;
    } /* outer loop */

    /* test for termination */
    if (togo == 0 && cnt == 0) {
	snd_list_terminate(snd_list);
    } else {
	snd_list->block_len = cnt;
	susp->susp.current += cnt;
    }
    /* test for logical stop */
    if (susp->logically_stopped) {
	snd_list->logically_stopped = true;
    } else if (susp->susp.log_stop_cnt == susp->susp.current) {
	susp->logically_stopped = true;
    }
} /* buzz_s_fetch */


void buzz_i_fetch(register buzz_susp_type susp, snd_list_type snd_list)
{
    int cnt = 0; /* how many samples computed */
    int togo;
    int n;
    sample_block_type out;
    register sample_block_values_type out_ptr;

    register sample_block_values_type out_ptr_reg;

    register double ph_incr_reg;
    register float n_2_r_reg;
    register float n_2_p1_reg;
    register double phase_reg;
    register double s_fm_pHaSe_iNcR_rEg = susp->s_fm_pHaSe_iNcR;
    register double s_fm_pHaSe_ReG;
    register sample_type s_fm_x1_sample_reg;
    falloc_sample_block(out, "buzz_i_fetch");
    out_ptr = out->samples;
    snd_list->block = out;

    /* make sure sounds are primed with first values */
    if (!susp->started) {
	susp->started = true;
	susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt);
	susp->s_fm_x1_sample = susp_fetch_sample(s_fm, s_fm_ptr, s_fm_cnt);
    }

    while (cnt < max_sample_block_len) { /* outer loop */
	/* first compute how many samples to generate in inner loop: */
	/* don't overflow the output sample block: */
	togo = max_sample_block_len - cnt;

	/* don't run past terminate time */
	if (susp->terminate_cnt != UNKNOWN &&
	    susp->terminate_cnt <= susp->susp.current + cnt + togo) {
	    togo = susp->terminate_cnt - (susp->susp.current + cnt);
	    if (togo == 0) break;
	}


	/* don't run past logical stop time */
	if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
	    int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
	    /* break if to_stop == 0 (we're at the logical stop)
	     * AND cnt > 0 (we're not at the beginning of the
	     * output block).
	     */
	    if (to_stop < togo) {
		if (to_stop == 0) {
		    if (cnt) {
			togo = 0;
			break;
		    } else /* keep togo as is: since cnt == 0, we
		            * can set the logical stop flag on this
		            * output block
		            */
			susp->logically_stopped = true;
		} else /* limit togo so we can start a new
		        * block at the LST
		        */
		    togo = to_stop;
	    }
	}

	n = togo;
	ph_incr_reg = susp->ph_incr;
	n_2_r_reg = susp->n_2_r;
	n_2_p1_reg = susp->n_2_p1;
	phase_reg = susp->phase;
	s_fm_pHaSe_ReG = susp->s_fm_pHaSe;
	s_fm_x1_sample_reg = susp->s_fm_x1_sample;
	out_ptr_reg = out_ptr;
	if (n) do { /* the inner sample computation loop */
	    long table_index;
            double x1;
            sample_type num, denom, samp;
	    if (s_fm_pHaSe_ReG >= 1.0) {
/* fixup-depends s_fm */
		/* pick up next sample as s_fm_x1_sample: */
		susp->s_fm_ptr++;
		susp_took(s_fm_cnt, 1);
		s_fm_pHaSe_ReG -= 1.0;
		susp_check_term_log_samples_break(s_fm, s_fm_ptr, s_fm_cnt, s_fm_x1_sample_reg);
		s_fm_x1_sample_reg = susp_current_sample(s_fm, s_fm_ptr);
	    }

            table_index = (long) phase_reg;
            x1 = sine_table[table_index];
            denom = (sample_type) (x1 + (phase_reg - table_index) * 
                          (sine_table[table_index + 1] - x1));
            if (denom < 0.001 && denom > -0.005) {
                samp = 1.0F;
            } else {
                double phn2p1 = phase_reg * n_2_p1_reg * (1.0/SINE_TABLE_LEN);
                phn2p1 = (phn2p1 - (long) phn2p1) * SINE_TABLE_LEN;
                table_index = (long) phn2p1;
                x1 = sine_table[table_index];
                num = (sample_type) (x1 + (phn2p1 - table_index) *
                        (sine_table[table_index + 1] - x1));
                samp = ((num / denom) - 1.0F) * n_2_r_reg;
            }
            *out_ptr_reg++ = samp;
            phase_reg += ph_incr_reg + s_fm_x1_sample_reg;
            while (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN;
            /* watch out for negative frequencies! */
            while (phase_reg < 0) phase_reg += SINE_TABLE_LEN;
	    s_fm_pHaSe_ReG += s_fm_pHaSe_iNcR_rEg;
	} while (--n); /* inner loop */

	togo -= n;
	susp->phase = phase_reg;
	susp->s_fm_pHaSe = s_fm_pHaSe_ReG;
	susp->s_fm_x1_sample = s_fm_x1_sample_reg;
	out_ptr += togo;
	cnt += togo;
    } /* outer loop */

    /* test for termination */
    if (togo == 0 && cnt == 0) {
	snd_list_terminate(snd_list);
    } else {
	snd_list->block_len = cnt;
	susp->susp.current += cnt;
    }
    /* test for logical stop */
    if (susp->logically_stopped) {
	snd_list->logically_stopped = true;
    } else if (susp->susp.log_stop_cnt == susp->susp.current) {
	susp->logically_stopped = true;
    }
} /* buzz_i_fetch */


void buzz_r_fetch(register buzz_susp_type susp, snd_list_type snd_list)
{
    int cnt = 0; /* how many samples computed */
    sample_type s_fm_val;
    int togo;
    int n;
    sample_block_type out;
    register sample_block_values_type out_ptr;

    register sample_block_values_type out_ptr_reg;

    register double ph_incr_reg;
    register float n_2_r_reg;
    register float n_2_p1_reg;
    register double phase_reg;
    falloc_sample_block(out, "buzz_r_fetch");
    out_ptr = out->samples;
    snd_list->block = out;

    /* make sure sounds are primed with first values */
    if (!susp->started) {
	susp->started = true;
	susp->s_fm_pHaSe = 1.0;
    }

    susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt);

    while (cnt < max_sample_block_len) { /* outer loop */
	/* first compute how many samples to generate in inner loop: */
	/* don't overflow the output sample block: */
	togo = max_sample_block_len - cnt;

	/* grab next s_fm_x1_sample when phase goes past 1.0; */
	/* use s_fm_n (computed below) to avoid roundoff errors: */
	if (susp->s_fm_n <= 0) {
	    susp_check_term_log_samples(s_fm, s_fm_ptr, s_fm_cnt);
	    susp->s_fm_x1_sample = susp_fetch_sample(s_fm, s_fm_ptr, s_fm_cnt);
	    susp->s_fm_pHaSe -= 1.0;
	    /* s_fm_n gets number of samples before phase exceeds 1.0: */
	    susp->s_fm_n = (long) ((1.0 - susp->s_fm_pHaSe) *
					susp->output_per_s_fm);
	}
	togo = MIN(togo, susp->s_fm_n);
	s_fm_val = susp->s_fm_x1_sample;
	/* don't run past terminate time */
	if (susp->terminate_cnt != UNKNOWN &&
	    susp->terminate_cnt <= susp->susp.current + cnt + togo) {
	    togo = susp->terminate_cnt - (susp->susp.current + cnt);
	    if (togo == 0) break;
	}


	/* don't run past logical stop time */
	if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
	    int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
	    /* break if to_stop == 0 (we're at the logical stop)
	     * AND cnt > 0 (we're not at the beginning of the
	     * output block).
	     */
	    if (to_stop < togo) {
		if (to_stop == 0) {
		    if (cnt) {
			togo = 0;
			break;
		    } else /* keep togo as is: since cnt == 0, we
		            * can set the logical stop flag on this
		            * output block
		            */
			susp->logically_stopped = true;
		} else /* limit togo so we can start a new
		        * block at the LST
		        */
		    togo = to_stop;
	    }
	}

	n = togo;
	ph_incr_reg = susp->ph_incr;
	n_2_r_reg = susp->n_2_r;
	n_2_p1_reg = susp->n_2_p1;
	phase_reg = susp->phase;
	out_ptr_reg = out_ptr;
	if (n) do { /* the inner sample computation loop */
	    long table_index;
            double x1;
            sample_type num, denom, samp;

            table_index = (long) phase_reg;
            x1 = sine_table[table_index];
            denom = (sample_type) (x1 + (phase_reg - table_index) * 
                          (sine_table[table_index + 1] - x1));
            if (denom < 0.001 && denom > -0.005) {
                samp = 1.0F;
            } else {
                double phn2p1 = phase_reg * n_2_p1_reg * (1.0/SINE_TABLE_LEN);
                phn2p1 = (phn2p1 - (long) phn2p1) * SINE_TABLE_LEN;
                table_index = (long) phn2p1;
                x1 = sine_table[table_index];
                num = (sample_type) (x1 + (phn2p1 - table_index) *
                        (sine_table[table_index + 1] - x1));
                samp = ((num / denom) - 1.0F) * n_2_r_reg;
            }
            *out_ptr_reg++ = samp;
            phase_reg += ph_incr_reg + s_fm_val;
            while (phase_reg > SINE_TABLE_LEN) phase_reg -= SINE_TABLE_LEN;
            /* watch out for negative frequencies! */
            while (phase_reg < 0) phase_reg += SINE_TABLE_LEN;
	} while (--n); /* inner loop */

	susp->phase = phase_reg;
	out_ptr += togo;
	susp->s_fm_pHaSe += togo * susp->s_fm_pHaSe_iNcR;
	susp->s_fm_n -= togo;
	cnt += togo;
    } /* outer loop */

    /* test for termination */
    if (togo == 0 && cnt == 0) {
	snd_list_terminate(snd_list);
    } else {
	snd_list->block_len = cnt;
	susp->susp.current += cnt;
    }
    /* test for logical stop */
    if (susp->logically_stopped) {
	snd_list->logically_stopped = true;
    } else if (susp->susp.log_stop_cnt == susp->susp.current) {
	susp->logically_stopped = true;
    }
} /* buzz_r_fetch */


void buzz_toss_fetch(susp, snd_list)
  register buzz_susp_type susp;
  snd_list_type snd_list;
{
    long final_count = susp->susp.toss_cnt;
    time_type final_time = susp->susp.t0;
    long n;

    /* fetch samples from s_fm up to final_time for this block of zeros */
    while ((round((final_time - susp->s_fm->t0) * susp->s_fm->sr)) >=
	   susp->s_fm->current)
	susp_get_samples(s_fm, s_fm_ptr, s_fm_cnt);
    /* convert to normal processing when we hit final_count */
    /* we want each signal positioned at final_time */
    n = round((final_time - susp->s_fm->t0) * susp->s_fm->sr -
         (susp->s_fm->current - susp->s_fm_cnt));
    susp->s_fm_ptr += n;
    susp_took(s_fm_cnt, n);
    susp->susp.fetch = susp->susp.keep_fetch;
    (*(susp->susp.fetch))(susp, snd_list);
}


void buzz_mark(buzz_susp_type susp)
{
    sound_xlmark(susp->s_fm);
}


void buzz_free(buzz_susp_type susp)
{
    sound_unref(susp->s_fm);
    ffree_generic(susp, sizeof(buzz_susp_node), "buzz_free");
}


void buzz_print_tree(buzz_susp_type susp, int n)
{
    indent(n);
    stdputstr("s_fm:");
    sound_print_tree_1(susp->s_fm, n);
}


sound_type snd_make_buzz(long n, rate_type sr, double hz, time_type t0, sound_type s_fm)
{
    register buzz_susp_type susp;
    /* sr specified as input parameter */
    /* t0 specified as input parameter */
    int interp_desc = 0;
    sample_type scale_factor = 1.0F;
    time_type t0_min = t0;
    falloc_generic(susp, buzz_susp_node, "snd_make_buzz");
    susp->ph_incr = 0;
    susp->n_2_r = 1.0F / (n * 2);
    susp->n_2_p1 = (float) ((n * 2) + 1);
    susp->phase = compute_phase(PI*0.5, 69.0, SINE_TABLE_LEN,
        SINE_TABLE_LEN * 440.0, sr, hz, &susp->ph_incr);
    s_fm->scale *= hz != 0 ? (sample_type) (susp->ph_incr / hz)
                           : (sample_type) (SINE_TABLE_LEN / sr);

    /* select a susp fn based on sample rates */
    interp_desc = (interp_desc << 2) + interp_style(s_fm, sr);
    switch (interp_desc) {
      case INTERP_n: /* handled below */
      case INTERP_s: susp->susp.fetch = buzz_s_fetch; break;
      case INTERP_i: susp->susp.fetch = buzz_i_fetch; break;
      case INTERP_r: susp->susp.fetch = buzz_r_fetch; break;
      default: snd_badsr(); break;
    }

    susp->terminate_cnt = UNKNOWN;
    /* handle unequal start times, if any */
    if (t0 < s_fm->t0) sound_prepend_zeros(s_fm, t0);
    /* minimum start time over all inputs: */
    t0_min = MIN(s_fm->t0, t0);
    /* how many samples to toss before t0: */
    susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
    if (susp->susp.toss_cnt > 0) {
	susp->susp.keep_fetch = susp->susp.fetch;
	susp->susp.fetch = buzz_toss_fetch;
    }

    /* initialize susp state */
    susp->susp.free = buzz_free;
    susp->susp.sr = sr;
    susp->susp.t0 = t0;
    susp->susp.mark = buzz_mark;
    susp->susp.print_tree = buzz_print_tree;
    susp->susp.name = "buzz";
    susp->logically_stopped = false;
    susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s_fm);
    susp->started = false;
    susp->susp.current = 0;
    susp->s_fm = s_fm;
    susp->s_fm_cnt = 0;
    susp->s_fm_pHaSe = 0.0;
    susp->s_fm_pHaSe_iNcR = s_fm->sr / sr;
    susp->s_fm_n = 0;
    susp->output_per_s_fm = sr / s_fm->sr;
    return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}


sound_type snd_buzz(long n, rate_type sr, double hz, time_type t0, sound_type s_fm)
{
    sound_type s_fm_copy = sound_copy(s_fm);
    return snd_make_buzz(n, sr, hz, t0, s_fm_copy);
}