1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "delay.h"
void delay_free();
typedef struct delay_susp_struct {
snd_susp_node susp;
long terminate_cnt;
sound_type input;
long input_cnt;
sample_block_values_type input_ptr;
double feedback;
long delaylen;
sample_type *delaybuf;
sample_type *delayptr;
sample_type *endptr;
} delay_susp_node, *delay_susp_type;
void delay_n_fetch(register delay_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double feedback_reg;
register sample_type * delayptr_reg;
register sample_type * endptr_reg;
register sample_block_values_type input_ptr_reg;
falloc_sample_block(out, "delay_n_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the input input sample block: */
susp_check_term_samples(input, input_ptr, input_cnt);
togo = MIN(togo, susp->input_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
n = togo;
feedback_reg = susp->feedback;
delayptr_reg = susp->delayptr;
endptr_reg = susp->endptr;
input_ptr_reg = susp->input_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
*out_ptr_reg++ = *delayptr_reg;
*delayptr_reg = (sample_type) (*delayptr_reg * feedback_reg) + *input_ptr_reg++;
if (++delayptr_reg >= endptr_reg) delayptr_reg = susp->delaybuf;;
} while (--n); /* inner loop */
susp->delayptr = delayptr_reg;
/* using input_ptr_reg is a bad idea on RS/6000: */
susp->input_ptr += togo;
out_ptr += togo;
susp_took(input_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
} /* delay_n_fetch */
void delay_toss_fetch(susp, snd_list)
register delay_susp_type susp;
snd_list_type snd_list;
{
long final_count = susp->susp.toss_cnt;
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from input up to final_time for this block of zeros */
while ((round((final_time - susp->input->t0) * susp->input->sr)) >=
susp->input->current)
susp_get_samples(input, input_ptr, input_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = round((final_time - susp->input->t0) * susp->input->sr -
(susp->input->current - susp->input_cnt));
susp->input_ptr += n;
susp_took(input_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(susp, snd_list);
}
void delay_mark(delay_susp_type susp)
{
sound_xlmark(susp->input);
}
void delay_free(delay_susp_type susp)
{
free(susp->delaybuf); sound_unref(susp->input);
ffree_generic(susp, sizeof(delay_susp_node), "delay_free");
}
void delay_print_tree(delay_susp_type susp, int n)
{
indent(n);
stdputstr("input:");
sound_print_tree_1(susp->input, n);
}
sound_type snd_make_delay(sound_type input, time_type delay, double feedback)
{
register delay_susp_type susp;
rate_type sr = input->sr;
time_type t0 = input->t0;
int interp_desc = 0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
/* combine scale factors of linear inputs (INPUT) */
scale_factor *= input->scale;
input->scale = 1.0F;
/* try to push scale_factor back to a low sr input */
if (input->sr < sr) { input->scale = scale_factor; scale_factor = 1.0F; }
falloc_generic(susp, delay_susp_node, "snd_make_delay");
susp->feedback = feedback;
susp->delaylen = MAX(1, round(input->sr * delay));
susp->delaybuf = (sample_type *) calloc (susp->delaylen, sizeof(sample_type));
susp->delayptr = susp->delaybuf;
susp->endptr = susp->delaybuf + susp->delaylen;
susp->susp.fetch = delay_n_fetch;
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < input->t0) sound_prepend_zeros(input, t0);
/* minimum start time over all inputs: */
t0_min = MIN(input->t0, t0);
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = delay_toss_fetch;
}
/* initialize susp state */
susp->susp.free = delay_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = delay_mark;
susp->susp.print_tree = delay_print_tree;
susp->susp.name = "delay";
susp->susp.log_stop_cnt = UNKNOWN;
susp->susp.current = 0;
susp->input = input;
susp->input_cnt = 0;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_delay(sound_type input, time_type delay, double feedback)
{
sound_type input_copy = sound_copy(input);
return snd_make_delay(input_copy, delay, feedback);
}
|