1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
/* convolve.c -- implements (non-"fast") convolution */
/*
* Note: this code is mostly generated by translate.lsp (see convole.tran
* in the tran directory), but it has been modified by hand to extend the
* stop time to include the "tail" of the convolution beyond the length
* of the first parameter.
*/
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "convolve.h"
void convolve_free();
typedef struct convolve_susp_struct {
snd_susp_node susp;
long terminate_cnt;
boolean logically_stopped;
sound_type x_snd;
long x_snd_cnt;
sample_block_values_type x_snd_ptr;
table_type table;
sample_type *h_buf;
double length_of_h;
long h_len;
long x_buf_len;
sample_type *x_buffer_pointer;
sample_type *x_buffer_current;
} convolve_susp_node, *convolve_susp_type;
void h_reverse(sample_type *h, long len)
{
sample_type temp;
int i;
for (i = 0; i < len; i++) {
temp = h[i];
h[i] = h[len - 1];
h[len - 1] = temp;
len--;
}
}
void convolve_s_fetch(register convolve_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register sample_type * h_buf_reg;
register long h_len_reg;
register long x_buf_len_reg;
register sample_type * x_buffer_pointer_reg;
register sample_type * x_buffer_current_reg;
register sample_type x_snd_scale_reg = susp->x_snd->scale;
register sample_block_values_type x_snd_ptr_reg;
falloc_sample_block(out, "convolve_s_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the x_snd input sample block: */
/* based on susp_check_term_log_samples, but offset by h_len */
/* THIS IS EXPANDED BELOW
* susp_check_term_log_samples(x_snd, x_snd_ptr, x_snd_cnt);
*/
if (susp->x_snd_cnt == 0) {
susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt);
/* THIS IS EXPANDED BELOW
*logical_stop_test(x_snd, susp->x_snd_cnt);
*/
if (susp->x_snd->logical_stop_cnt ==
susp->x_snd->current - susp->x_snd_cnt) {
min_cnt(&susp->susp.log_stop_cnt, susp->x_snd,
(snd_susp_type) susp, susp->x_snd_cnt);
}
/* THIS IS EXPANDED BELOW
* terminate_test(x_snd_ptr, x_snd, susp->x_snd_cnt);
*/
if (susp->x_snd_ptr == zero_block->samples) {
/* ### modify this to terminate at an offset of (susp->h_len) */
/* Note: in the min_cnt function, susp->x_snd_cnt is *subtracted*
* from susp->x_snd->current to form the terminate time, so to
* increase the time, we need to *subtract* susp->h_len, which
* due to the double negative, *adds* susp->h_len to the ultimate
* terminate time calculation.
*/
min_cnt(&susp->terminate_cnt, susp->x_snd,
(snd_susp_type) susp, susp->x_snd_cnt - susp->h_len);
}
}
togo = min(togo, susp->x_snd_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop;
}
}
n = togo;
h_buf_reg = susp->h_buf;
h_len_reg = susp->h_len;
x_buf_len_reg = susp->x_buf_len;
x_buffer_pointer_reg = susp->x_buffer_pointer;
x_buffer_current_reg = susp->x_buffer_current;
x_snd_ptr_reg = susp->x_snd_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
long i; double sum;
/* see if we've reached end of x_buffer */
if ((x_buffer_pointer_reg + x_buf_len_reg) <= (x_buffer_current_reg + h_len_reg)) {
/* shift x_buffer from current back to base */
for (i = 1; i < h_len_reg; i++) {
x_buffer_pointer_reg[i-1] = x_buffer_current_reg[i];
}
/* this will be incremented back to x_buffer_pointer_reg below */
x_buffer_current_reg = x_buffer_pointer_reg - 1;
}
x_buffer_current_reg++;
x_buffer_current_reg[h_len_reg - 1] = (x_snd_scale_reg * *x_snd_ptr_reg++);
sum = 0.0;
for (i = 0; i < h_len_reg; i++) {
sum += x_buffer_current_reg[i] * h_buf_reg[i];
}
*out_ptr_reg++ = (sample_type) sum;
} while (--n); /* inner loop */
susp->x_buffer_pointer = x_buffer_pointer_reg;
susp->x_buffer_current = x_buffer_current_reg;
/* using x_snd_ptr_reg is a bad idea on RS/6000: */
susp->x_snd_ptr += togo;
out_ptr += togo;
susp_took(x_snd_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* convolve_s_fetch */
void convolve_toss_fetch(susp, snd_list)
register convolve_susp_type susp;
snd_list_type snd_list;
{
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from x_snd up to final_time for this block of zeros */
while ((round((final_time - susp->x_snd->t0) * susp->x_snd->sr)) >=
susp->x_snd->current)
susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = round((final_time - susp->x_snd->t0) * susp->x_snd->sr -
(susp->x_snd->current - susp->x_snd_cnt));
susp->x_snd_ptr += n;
susp_took(x_snd_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(susp, snd_list);
}
void convolve_mark(convolve_susp_type susp)
{
sound_xlmark(susp->x_snd);
}
void convolve_free(convolve_susp_type susp)
{
table_unref(susp->table);
free(susp->x_buffer_pointer); sound_unref(susp->x_snd);
ffree_generic(susp, sizeof(convolve_susp_node), "convolve_free");
}
void convolve_print_tree(convolve_susp_type susp, int n)
{
indent(n);
stdputstr("x_snd:");
sound_print_tree_1(susp->x_snd, n);
}
sound_type snd_make_convolve(sound_type x_snd, sound_type h_snd)
{
register convolve_susp_type susp;
rate_type sr = x_snd->sr;
time_type t0 = x_snd->t0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
falloc_generic(susp, convolve_susp_node, "snd_make_convolve");
susp->table = sound_to_table(h_snd);
susp->h_buf = susp->table->samples;
susp->length_of_h = susp->table->length;
susp->h_len = (long) susp->length_of_h;
h_reverse(susp->h_buf, susp->h_len);
susp->x_buf_len = 2 * susp->h_len;
susp->x_buffer_pointer = calloc((2 * (susp->h_len)), sizeof(float));
susp->x_buffer_current = susp->x_buffer_pointer;
susp->susp.fetch = convolve_s_fetch;
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < x_snd->t0) sound_prepend_zeros(x_snd, t0);
/* minimum start time over all inputs: */
t0_min = min(x_snd->t0, t0);
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = convolve_toss_fetch;
}
/* initialize susp state */
susp->susp.free = convolve_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = convolve_mark;
susp->susp.print_tree = convolve_print_tree;
susp->susp.name = "convolve";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(x_snd);
susp->susp.current = 0;
susp->x_snd = x_snd;
susp->x_snd_cnt = 0;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_convolve(sound_type x_snd, sound_type h_snd)
{
sound_type x_snd_copy = sound_copy(x_snd);
return snd_make_convolve(x_snd_copy, h_snd);
}
|