1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "avg.h"
/* CHANGE LOG
* --------------------------------------------------------------------
* 28Apr03 dm changes for portability and fix compiler warnings
*/
void avg_free();
typedef sample_type (*process_block_type)(/* struct avg_susp_struct *susp */);
typedef struct avg_susp_struct {
snd_susp_node susp;
long terminate_cnt;
boolean logically_stopped;
sound_type s;
long s_cnt;
sample_block_values_type s_ptr;
/* blocksize is how many input samples to process for an output sample */
long blocksize;
/* stepsize is how far to advance to get the next block of samples */
long stepsize;
sample_type *buffer;
sample_type *fillptr; /* samples are added to buffer at fillptr */
sample_type *endptr; /* until endptr is reached */
process_block_type process_block;
} avg_susp_node, *avg_susp_type;
sample_type average_block(avg_susp_type susp)
{
/* this version just computes average */
double sum = 0.0;
int i;
for (i = 0; i < susp->blocksize; i++) {
sum += susp->buffer[i];
}
for (i = susp->stepsize; i < susp->blocksize; i++) {
susp->buffer[i - susp->stepsize] = susp->buffer[i];
}
return (sample_type) (sum / susp->blocksize);
}
sample_type peak_block(avg_susp_type susp)
{
/* this version just computes average */
sample_type peak = 0.0F;
sample_type minus_peak = 0.0F;
int i;
for (i = 0; i < susp->blocksize; i++) {
sample_type s = susp->buffer[i];
if (s > peak) {
peak = s; minus_peak = -s;
} else if (s < minus_peak) {
minus_peak = s; peak = -s;
}
}
for (i = susp->stepsize; i < susp->blocksize; i++) {
susp->buffer[i - susp->stepsize] = susp->buffer[i];
}
return peak;
}
void avg_s_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
avg_susp_type susp = (avg_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
int togo = 0;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_type *fillptr_reg;
register sample_type *endptr_reg = susp->endptr;
register sample_block_values_type s_ptr_reg;
falloc_sample_block(out, "avg_s_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = (max_sample_block_len - cnt) * susp->stepsize;
/* don't run past the s input sample block: */
susp_check_term_log_samples(s, s_ptr, s_cnt);
togo = MIN(togo, susp->s_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo/susp->stepsize) {
togo = (susp->terminate_cnt - (susp->susp.current + cnt)) * susp->stepsize;
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo/susp->stepsize) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = to_stop * susp->stepsize;
}
}
n = togo;
s_ptr_reg = susp->s_ptr;
fillptr_reg = susp->fillptr;
if (n) do { /* the inner sample computation loop */
*fillptr_reg++ = *s_ptr_reg++;
if (fillptr_reg >= endptr_reg) {
*out_ptr++ = (*(susp->process_block))(susp);
cnt++;
fillptr_reg -= susp->stepsize;
}
} while (--n); /* inner loop */
/* using s_ptr_reg is a bad idea on RS/6000: */
susp->s_ptr += togo;
susp->fillptr = fillptr_reg;
susp_took(s_cnt, togo);
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* avg_s_fetch */
void avg_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
avg_susp_type susp = (avg_susp_type) a_susp;
long final_count = MIN(susp->susp.current + max_sample_block_len,
susp->susp.toss_cnt);
time_type final_time = susp->susp.t0 + final_count / susp->susp.sr;
long n;
/* fetch samples from s up to final_time for this block of zeros */
while (((long) ((final_time - susp->s->t0) * susp->s->sr + 0.5)) >=
susp->s->current)
susp_get_samples(s, s_ptr, s_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
if (final_count == susp->susp.toss_cnt) {
n = ROUND((final_time - susp->s->t0) * susp->s->sr -
(susp->s->current - susp->s_cnt));
susp->s_ptr += n;
susp_took(s_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
}
snd_list->block_len = (short) (final_count - susp->susp.current);
susp->susp.current = final_count;
snd_list->u.next = snd_list_create((snd_susp_type) susp);
snd_list->block = internal_zero_block;
}
void avg_mark(snd_susp_type a_susp)
{
avg_susp_type susp = (avg_susp_type) a_susp;
sound_xlmark(susp->s);
}
void avg_free(snd_susp_type a_susp)
{
avg_susp_type susp = (avg_susp_type) a_susp;
sound_unref(susp->s);
free(susp->buffer);
ffree_generic(susp, sizeof(avg_susp_node), "avg_free");
}
void avg_print_tree(snd_susp_type a_susp, int n)
{
avg_susp_type susp = (avg_susp_type) a_susp;
indent(n);
stdputstr("s:");
sound_print_tree_1(susp->s, n);
}
sound_type snd_make_avg(sound_type s, long blocksize, long stepsize, long op)
{
long buffersize;
register avg_susp_type susp;
rate_type sr = s->sr;
time_type t0 = s->t0;
time_type t0_min = t0;
/* ASSUME 32-BIT INTS */
/* Later, we will compute togo, the number of input samples to process
for one block of output. We read stepsize of input for each sample
of output, so the total is stepsize * max_sample_block_len, but
this could be very big and cause integer overflow, so here, we
prevent the overflow by limiting stepsize */
if (stepsize > (0x7FFFFFFF / max_sample_block_len)) {
xlerror("In SND-AVG, stepsize is too big", s_unbound);
}
falloc_generic(susp, avg_susp_node, "snd_make_avg");
susp->susp.fetch = avg_s_fetch;
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < s->t0) sound_prepend_zeros(s, t0);
/* minimum start time over all inputs: */
t0_min = MIN(s->t0, t0);
/* how many samples to toss before t0: */
susp->susp.toss_cnt = ROUND((t0 - t0_min) * sr);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = avg_toss_fetch;
t0 = t0_min;
}
/* initialize susp state */
susp->susp.free = avg_free;
susp->susp.sr = sr / stepsize;
susp->susp.t0 = t0;
susp->susp.mark = avg_mark;
susp->susp.print_tree = avg_print_tree;
susp->susp.name = "avg";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s);
susp->susp.current = 0;
susp->s = s;
susp->s_cnt = 0;
susp->blocksize = blocksize;
susp->stepsize = stepsize;
/* We need at least blocksize samples in buffer,
but if stepsize > blocksize,
it is convenient to put stepsize samples in buffer. This allows us to
step ahead by stepsize samples just by flushing the buffer. */
buffersize = MAX(blocksize, stepsize);
susp->buffer = (sample_type *) malloc(buffersize * sizeof(sample_type));
if (!susp->buffer) {
sound_unref(susp->s);
ffree_generic(susp, sizeof(avg_susp_node), "avg_free");
xlerror("memory allocation failed in SND-AVG", s_unbound);
}
susp->fillptr = susp->buffer;
susp->endptr = susp->buffer + buffersize;
susp->process_block = average_block;
if (op == op_peak) susp->process_block = peak_block;
/* scale factor gets passed to output signal: */
return sound_create((snd_susp_type) susp, t0, susp->susp.sr, susp->s->scale);
}
sound_type snd_avg(sound_type s, long blocksize, long stepsize, long op)
{
sound_type s_copy = sound_copy(s);
return snd_make_avg(s_copy, blocksize, stepsize, op);
}
|