1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "compose.h"
/* CHANGE LOG
* --------------------------------------------------------------------
* 28Apr03 dm changes for portability and fix compiler warnings
*/
void compose_free();
typedef struct compose_susp_struct {
snd_susp_node susp;
long terminate_cnt;
boolean logically_stopped;
sound_type f;
long f_cnt;
sample_block_values_type f_ptr;
sample_type f_prev;
double f_time;
double f_time_increment;
boolean started;
sound_type g;
long g_cnt;
sample_block_values_type g_ptr;
} compose_susp_node, *compose_susp_type;
/* compose_fetch -- computes f(g(t)) */
/**/
void compose_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
compose_susp_type susp = (compose_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
int togo = 0;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register sample_block_values_type g_ptr_reg;
register sample_block_values_type f_ptr_reg;
falloc_sample_block(out, "compose_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure we are primed with first value of f */
/* This is a lot of work just to prefetch susp->f_prev! */
if (!susp->started) {
susp->started = true;
/* see comments below about susp_check_term_log_samples() */
if (susp->f_cnt == 0) {
susp_get_samples(f, f_ptr, f_cnt);
if (susp->f_ptr == zero_block->samples) {
susp->terminate_cnt = susp->susp.current;
}
}
susp->f_prev = susp_fetch_sample(f, f_ptr, f_cnt);
susp->f_time += susp->f_time_increment;
}
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past the f input sample block: */
/* most fetch routines call susp_check_term_log_samples() here
* but we can't becasue susp_check_term_log_samples() assumes
* that output time progresses at the same rate as input time.
* Here, some time warping is going on, so this doesn't work.
* Instead, check for termination of f and fix terminate_cnt to
* be the current output count rather than the current input time.
*/
if (susp->f_cnt == 0) {
susp_get_samples(f, f_ptr, f_cnt);
if (susp->f->logical_stop_cnt == susp->f->current - susp->f_cnt) {
if (susp->susp.log_stop_cnt == UNKNOWN) {
susp->susp.log_stop_cnt = susp->susp.current + cnt;
}
}
if (susp->f_ptr == zero_block->samples) {
susp->terminate_cnt = susp->susp.current + cnt;
/* we can't simply terminate here because we might have
* some output samples computed already, in which case we
* want to return them now and terminate the NEXT time we're
* called.
*/
}
}
#ifdef CUT
/* don't run past the f input sample block: */
susp_check_term_log_samples(f, f_ptr, f_cnt);
togo = MIN(togo, susp->f_cnt);
#endif
/* don't run past the g input sample block: */
susp_check_term_samples(g, g_ptr, g_cnt);
togo = MIN(togo, susp->g_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = susp->terminate_cnt - (susp->susp.current + cnt);
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
if (to_stop < togo && ((togo = to_stop) == 0)) break;
}
n = togo;
g_ptr_reg = susp->g_ptr;
f_ptr_reg = susp->f_ptr;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
double g_of_t = *g_ptr_reg;
#if 0
float tmp; /* for debugging */
nyquist_printf("output sample %d, g_of_t %g", susp->susp.current + cnt, g_of_t);
#endif
/* now we scan f and interpolate at time point g_of_t */
while (susp->f_time < g_of_t) {
susp->f_time += susp->f_time_increment;
susp->f_prev = *f_ptr_reg++;
/* nyquist_printf(", (f_time %g, f %g)", susp->f_time, *f_ptr_reg); */
susp->f_ptr++;
susp->f_cnt--;
if (susp->f_cnt == 0) {
togo -= n;
/* stdputstr("\n\tf out of samples...\n"); */
goto f_out_of_samples;
}
}
g_ptr_reg++;
*out_ptr_reg++ /* = tmp */ =
(sample_type) (*f_ptr_reg - (*f_ptr_reg - susp->f_prev) *
(susp->f_time - g_of_t) * susp->f->sr);
/* nyquist_printf(", output %g\n", tmp);*/
} while (--n); /* inner loop */
f_out_of_samples:
/* using g_ptr_reg is a bad idea on RS/6000: */
susp->g_ptr += togo;
out_ptr += togo;
susp_took(g_cnt, togo);
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* compose_fetch */
void compose_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
compose_susp_type susp = (compose_susp_type) a_susp;
long final_count = MIN(susp->susp.current + max_sample_block_len,
susp->susp.toss_cnt);
time_type final_time = susp->susp.t0 + final_count / susp->susp.sr;
long n;
/* fetch samples from f up to final_time for this block of zeros */
while (((long) ((final_time - susp->f->t0) * susp->f->sr + 0.5)) >=
susp->f->current)
susp_get_samples(f, f_ptr, f_cnt);
/* fetch samples from g up to final_time for this block of zeros */
while (((long) ((final_time - susp->g->t0) * susp->g->sr + 0.5)) >=
susp->g->current)
susp_get_samples(g, g_ptr, g_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
if (final_count == susp->susp.toss_cnt) {
n = ROUND((final_time - susp->f->t0) * susp->f->sr -
(susp->f->current - susp->f_cnt));
susp->f_ptr += n;
susp_took(f_cnt, n);
n = ROUND((final_time - susp->g->t0) * susp->g->sr -
(susp->g->current - susp->g_cnt));
susp->g_ptr += n;
susp_took(g_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
}
snd_list->block_len = (short) (final_count - susp->susp.current);
susp->susp.current = final_count;
snd_list->u.next = snd_list_create((snd_susp_type) susp);
snd_list->block = internal_zero_block;
}
void compose_mark(snd_susp_type a_susp)
{
compose_susp_type susp = (compose_susp_type) a_susp;
sound_xlmark(susp->f);
sound_xlmark(susp->g);
}
void compose_free(snd_susp_type a_susp)
{
compose_susp_type susp = (compose_susp_type) a_susp;
sound_unref(susp->f);
sound_unref(susp->g);
ffree_generic(susp, sizeof(compose_susp_node), "compose_free");
}
void compose_print_tree(snd_susp_type a_susp, int n)
{
compose_susp_type susp = (compose_susp_type) a_susp;
indent(n);
stdputstr("f:");
sound_print_tree_1(susp->f, n);
indent(n);
stdputstr("g:");
sound_print_tree_1(susp->g, n);
}
sound_type snd_make_compose(sound_type f, sound_type g)
{
register compose_susp_type susp;
rate_type sr = g->sr;
time_type t0 = g->t0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
/* combine scale factors of linear inputs (S1 S2) */
scale_factor *= f->scale;
f->scale = 1.0F;
/* scale factor in g effectively scales sample rate of f: */
f->sr *= g->scale;
/* BUG */
/* probably need to correct f->t0, but I don't understand this,
so I'll leave this until we have some test cases */
falloc_generic(susp, compose_susp_node, "snd_make_compose");
susp->susp.fetch = compose_fetch;
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
/* BUG: do we need to prepend to f?
if (t0 < f->t0) sound_prepend_zeros(f, t0); */
if (t0 < g->t0) sound_prepend_zeros(g, t0);
/* minimum start time over all inputs: */
t0_min = MIN(g->t0, t0);
/* how many samples to toss before t0: */
susp->susp.toss_cnt = ROUND((t0 - t0_min) * sr);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = compose_toss_fetch;
t0 = t0_min;
}
/* initialize susp state */
susp->susp.free = compose_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = compose_mark;
susp->susp.print_tree = compose_print_tree;
susp->susp.name = "compose";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = f->logical_stop_cnt;
if (susp->susp.log_stop_cnt > g->logical_stop_cnt)
susp->susp.log_stop_cnt = g->logical_stop_cnt;
susp->susp.current = 0;
susp->f = f;
susp->f_cnt = 0;
susp->f_time = 0;
susp->f_time_increment = 1 / f->sr;
susp->g = g;
susp->g_cnt = 0;
susp->started = false;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_compose(sound_type f, sound_type g)
{
sound_type f_copy = sound_copy(f);
sound_type g_copy = sound_copy(g);
return snd_make_compose(f_copy, g_copy);
}
|