1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/* inverse.c -- compute the inverse of a sampled function */
/* CHANGE LOG
* --------------------------------------------------------------------
* 28Apr03 dm changes for portability and fix compiler warnings
*/
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "cext.h"
#include "falloc.h"
#include "inverse.h"
void inverse_free();
typedef struct inverse_susp_struct {
snd_susp_node susp;
long terminate_cnt;
boolean logically_stopped;
sound_type s;
long s_cnt;
sample_block_values_type s_ptr;
double s_prev;
double s_time;
double s_time_increment;
double out_time_increment;
boolean started;
} inverse_susp_node, *inverse_susp_type;
void inverse_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
inverse_susp_type susp = (inverse_susp_type) a_susp;
int cnt = 0; /* how many samples read from s */
int out_cnt = 0; /* how many samples output */
int togo = 0; /* how many more to read from s in inner loop */
int n;
sample_block_type out;
double out_time = susp->susp.current * susp->out_time_increment;
register sample_block_values_type out_ptr;
register sample_block_values_type s_ptr_reg;
falloc_sample_block(out, "inverse_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure we are primed with first value */
/* This is a lot of work just to prefetch susp->s_prev! */
if (!susp->started) {
susp->started = true;
/* see comments below about susp_check_term_log_samples() */
if (susp->s_cnt == 0) {
susp_get_samples(s, s_ptr, s_cnt);
if (susp->s_ptr == zero_block->samples) {
susp->terminate_cnt = susp->susp.current;
}
}
susp->s_prev = susp_fetch_sample(s, s_ptr, s_cnt);
}
while (out_cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't run past the s input sample block: */
/* most fetch routines call susp_check_term_log_samples() here
* but we can't becasue susp_check_term_log_samples() assumes
* that output time progresses at the same rate as input time.
* Here, some time warping is going on, so this doesn't work.
* Instead, check for termination of s and fix terminate_cnt to
* be the current output count rather than the current input time.
*/
if (susp->s_cnt == 0) {
susp_get_samples(s, s_ptr, s_cnt);
if (susp->s_ptr == zero_block->samples) {
susp->terminate_cnt = susp->susp.current + out_cnt;
/* we can't simply terminate here because we might have
* some output samples computed already, in which case we
* want to return them now and terminate the NEXT time we're
* called.
*/
}
}
togo = susp->s_cnt;
/* if we ran past terminate time, fix up output */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + out_cnt) {
/* pretend like we computed the correct number of samples */
togo = 0;
out_cnt = susp->terminate_cnt - susp->susp.current;
/* exit the loop to complete the termination */
break;
}
n = togo;
s_ptr_reg = susp->s_ptr;
if (n) do { /* the inner sample computation loop */
/* scan s_ptr_reg to time t, output and loop */
register double next_value = *s_ptr_reg++;
while (out_time < next_value) {
*out_ptr++ = (float) (susp->s_time +
(out_time - susp->s_prev) /
(susp->s->sr * (next_value - susp->s_prev)));
out_time += susp->out_time_increment;
if (++out_cnt >= max_sample_block_len) goto output_full;
}
susp->s_prev = next_value;
susp->s_time += susp->s_time_increment;
} while (--n); /* inner loop */
output_full:
/* using s_ptr_reg is a bad idea on RS/6000: */
susp->s_ptr += (togo - n);
susp_took(s_cnt, (togo - n));
cnt += (togo - n);
} /* outer loop */
/* test for termination */
if (togo == 0 && out_cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = out_cnt;
susp->susp.current += out_cnt;
}
} /* inverse_fetch */
void inverse_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
inverse_susp_type susp = (inverse_susp_type) a_susp;
long final_count = MIN(susp->susp.current + max_sample_block_len,
susp->susp.toss_cnt);
time_type final_time = susp->susp.t0 + final_count / susp->susp.sr;
long n;
/* fetch samples from s up to final_time for this block of zeros */
while (((long) ((final_time - susp->s->t0) * susp->s->sr + 0.5)) >=
susp->s->current)
susp_get_samples(s, s_ptr, s_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
if (final_count == susp->susp.toss_cnt) {
n = ROUND((final_time - susp->s->t0) * susp->s->sr -
(susp->s->current - susp->s_cnt));
susp->s_ptr += n;
susp_took(s_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
}
snd_list->block_len = (short) (final_count - susp->susp.current);
susp->susp.current = final_count;
snd_list->u.next = snd_list_create((snd_susp_type) susp);
snd_list->block = internal_zero_block;
}
void inverse_mark(snd_susp_type a_susp)
{
inverse_susp_type susp = (inverse_susp_type) a_susp;
sound_xlmark(susp->s);
}
void inverse_free(snd_susp_type a_susp)
{
inverse_susp_type susp = (inverse_susp_type) a_susp;
sound_unref(susp->s);
ffree_generic(susp, sizeof(inverse_susp_node), "inverse_free");
}
void inverse_print_tree(snd_susp_type a_susp, int n)
{
inverse_susp_type susp = (inverse_susp_type) a_susp;
indent(n);
stdputstr("s:");
sound_print_tree_1(susp->s, n);
}
sound_type snd_make_inverse(sound_type s, time_type t0, rate_type sr)
{
register inverse_susp_type susp;
falloc_generic(susp, inverse_susp_node, "snd_make_inverse");
susp->susp.fetch = inverse_fetch;
susp->terminate_cnt = UNKNOWN;
/* initialize susp state */
susp->susp.free = inverse_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = inverse_mark;
susp->susp.print_tree = inverse_print_tree;
susp->susp.name = "inverse";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = UNKNOWN; /* log stop time = term time */
susp->susp.current = 0;
susp->s = s;
susp->s_cnt = 0;
susp->s_prev = 0;
susp->s_time = 0;
susp->s_time_increment = 1 / s->sr;
susp->out_time_increment = 1 / (sr * s->scale);
susp->started = false;
return sound_create((snd_susp_type)susp, t0, sr, 1.0 /* scale */);
}
sound_type snd_inverse(sound_type s, time_type t0, rate_type sr)
{
sound_type s_copy = sound_copy(s);
return snd_make_inverse(s_copy, t0, sr);
}
|