1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
|
/* yin.c -- partial implementation of the YIN algorithm, with some
* fixes by DM. This code should be replaced with the fall 2002
* intro to computer music implementation project.
*/
#include "stdio.h"
#ifdef UNIX
#include "sys/file.h"
#endif
#ifndef mips
#include "stdlib.h"
#endif
#include "snd.h"
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "yin.h"
void yin_free();
/* for multiple channel results, one susp is shared by all sounds */
/* the susp in turn must point back to all sound list tails */
typedef struct yin_susp_struct {
snd_susp_node susp;
long terminate_cnt;
boolean logically_stopped;
sound_type s;
long s_cnt;
sample_block_values_type s_ptr;
long blocksize;
long stepsize;
sample_type *block;
float *temp;
sample_type *fillptr;
sample_type *endptr;
snd_list_type chan[2]; /* array of back pointers */
long cnt; /* how many sample frames to read */
long m;
long middle;
} yin_susp_node, *yin_susp_type;
// Uses cubic interpolation to return the value of x such
// that the function defined by f(0), f(1), f(2), and f(3)
// is maximized.
//
float CubicMaximize(float y0, float y1, float y2, float y3)
{
// Find coefficients of cubic
float a, b, c, d;
float da, db, dc;
float discriminant;
float x1, x2;
float dda, ddb;
a = (float) (y0/-6.0 + y1/2.0 - y2/2.0 + y3/6.0);
b = (float) (y0 - 5.0*y1/2.0 + 2.0*y2 - y3/2.0);
c = (float) (-11.0*y0/6.0 + 3.0*y1 - 3.0*y2/2.0 + y3/3.0);
d = y0;
// Take derivative
da = 3*a;
db = 2*b;
dc = c;
// Find zeroes of derivative using quadratic equation
discriminant = db*db - 4*da*dc;
if (discriminant < 0.0)
return -1.0; // error
x1 = (float) ((-db + sqrt(discriminant)) / (2 * da));
x2 = (float) ((-db - sqrt(discriminant)) / (2 * da));
// The one which corresponds to a local _maximum_ in the
// cubic is the one we want - the one with a negative
// second derivative
dda = 2*da;
ddb = db;
if (dda*x1 + ddb < 0)
return x1;
else
return x2;
}
void yin_compute(yin_susp_type susp, float *pitch, float *harmonicity)
{
float *samples = susp->block;
int middle = susp->middle;
/* int n = middle * 2; */
int m = susp->m;
float threshold = 0.9F;
float *results = susp->temp;
/* samples is a buffer of samples */
/* n is the number of samples, equals twice longest period, must be even */
/* m is the shortest period in samples */
/* results is an array of size n/2 - m + 1, the number of different lags */
/* work from the middle of the buffer: */
int i, j; /* loop counters */
/* how many different lags do we compute? */
/* int iterations = middle + 1 - m; */
float left_energy = 0;
float right_energy = 0;
/* for each window, we keep the energy so we can compute the next one */
/* incrementally. First, we need to compute the energies for lag m-1: */
*pitch = 0;
for (i = 0; i < m - 1; i++) {
float left = samples[middle - 1 - i];
float right = samples[middle + i];
left_energy += left * left;
right_energy += right * right;
}
for (i = m; i <= middle; i++) {
/* i is the lag and the length of the window */
/* compute the energy for left and right */
float left, right, energy, a;
float harmonic;
left = samples[middle - i];
left_energy += left * left;
right = samples[middle - 1 + i];
right_energy += right * right;
/* compute the autocorrelation */
a = 0;
for (j = 0; j < i; j++) {
a += samples[middle - i + j] * samples[middle + j];
}
energy = left_energy + right_energy;
harmonic = (2 * a) / energy;
results[i - m] = harmonic;
}
for (i = m; i <= middle; i++) {
if (results[i - m] > threshold) {
float f_i = (i - 1) +
CubicMaximize(results[i - m - 1], results[i - m],
results[i - m + 1], results[i - m + 2]);
if (f_i < i - m - 1 || f_i > i - m + 2) f_i = (float) i;
*pitch = (float) hz_to_step((float) susp->susp.sr / f_i);
*harmonicity = results[i - m];
break;
}
}
}
/* yin_fetch - compute F0 and harmonicity using YIN approach. */
/*
* The pitch (F0) is determined by finding two periods whose
* inner product accounts for almost all of the energy. Let X and Y
* be adjacent vectors of length N in the sample stream. Then,
* if 2X*Y > threshold * (X*X + Y*Y)
* then the period is given by N
* In the algorithm, we compute different sizes until we find a
* peak above threshold. Then, we use cubic interpolation to get
* a precise value. If no peak above threshold is found, we return
* the first peak. The second channel returns the value 2X*Y/(X*X+Y*Y)
* which is refered to as the "harmonicity" -- the amount of energy
* accounted for by periodicity.
*
* Low sample rates are advised because of the high cost of computing
* inner products (fast autocorrelation is not used).
*
* The result is a 2-channel signal running at the requested rate.
* The first channel is the estimated pitch, and the second channel
* is the harmonicity.
*
* This code is adopted from multiread, currently the only other
* multichannel suspension in Nyquist. Comments from multiread include:
* The susp is shared by all channels. The susp has backpointers
* to the tail-most snd_list node of each channel, and it is by
* extending the list at these nodes that sounds are read in.
* To avoid a circularity, the reference counts on snd_list nodes
* do not include the backpointers from this susp. When a snd_list
* node refcount goes to zero, the yin susp's free routine
* is called. This must scan the backpointers to find the node that
* has a zero refcount (the free routine is called before the node
* is deallocated, so this is safe). The backpointer is then set
* to NULL. When all backpointers are NULL, the susp itself is
* deallocated, because it can only be referenced through the
* snd_list nodes to which there are backpointers.
*/
void yin_fetch(yin_susp_type susp, snd_list_type snd_list)
{
int cnt = 0; /* how many samples computed */
int togo = 0;
int n;
sample_block_type f0;
sample_block_values_type f0_ptr = NULL;
sample_block_type harmonicity;
sample_block_values_type harmonicity_ptr = NULL;
register sample_block_values_type s_ptr_reg;
register sample_type *fillptr_reg;
register sample_type *endptr_reg = susp->endptr;
if (susp->chan[0]) {
falloc_sample_block(f0, "yin_fetch");
f0_ptr = f0->samples;
/* Since susp->chan[i] exists, we want to append a block of samples.
* The block, out, has been allocated. Before we insert the block,
* we must figure out whether to insert a new snd_list_type node for
* the block. Recall that before SND_get_next is called, the last
* snd_list_type in the list will have a null block pointer, and the
* snd_list_type's susp field points to the suspension (in this case,
* susp). When SND_get_next (in sound.c) is called, it appends a new
* snd_list_type and points the previous one to internal_zero_block
* before calling this fetch routine. On the other hand, since
* SND_get_next is only going to be called on one of the channels, the
* other channels will not have had a snd_list_type appended.
* SND_get_next does not tell us directly which channel it wants (it
* doesn't know), but we can test by looking for a non-null block in the
* snd_list_type pointed to by our back-pointers in susp->chan[]. If
* the block is null, the channel was untouched by SND_get_next, and
* we should append a snd_list_type. If it is non-null, then it
* points to internal_zero_block (the block inserted by SND_get_next)
* and a new snd_list_type has already been appended.
*/
/* Before proceeding, it may be that garbage collection ran when we
* allocated out, so check again to see if susp->chan[j] is Null:
*/
if (!susp->chan[0]) {
ffree_sample_block(f0, "yin_fetch");
f0 = NULL; /* make sure we don't free it again */
f0_ptr = NULL; /* make sure we don't output f0 samples */
} else if (!susp->chan[0]->block) {
snd_list_type snd_list = snd_list_create((snd_susp_type) susp);
/* Now we have a snd_list to append to the channel, but a very
* interesting thing can happen here. snd_list_create, which
* we just called, MAY have invoked the garbage collector, and
* the GC MAY have freed all references to this channel, in which
* case yin_free(susp) will have been called, and susp->chan[0]
* will now be NULL!
*/
if (!susp->chan[0]) {
ffree_snd_list(snd_list, "yin_fetch");
} else {
susp->chan[0]->u.next = snd_list;
}
}
/* see the note above: we don't know if susp->chan still exists */
/* Note: We DO know that susp still exists because even if we lost
* some channels in a GC, someone is still calling SND_get_next on
* some channel. I suppose that there might be some very pathological
* code that could free a global reference to a sound that is in the
* midst of being computed, perhaps by doing something bizarre in the
* closure that snd_seq activates at the logical stop time of its first
* sound, but I haven't thought that one through.
*/
if (susp->chan[0]) {
susp->chan[0]->block = f0;
/* check some assertions */
if (susp->chan[0]->u.next->u.susp != (snd_susp_type) susp) {
nyquist_printf("didn't find susp at end of list for chan 0\n");
}
} else if (f0) { /* we allocated f0, but don't need it anymore due to GC */
ffree_sample_block(f0, "yin_fetch");
f0_ptr = NULL;
}
}
/* Now, repeat for channel 1 (comments omitted) */
if (susp->chan[1]) {
falloc_sample_block(harmonicity, "yin_fetch");
harmonicity_ptr = harmonicity->samples;
if (!susp->chan[1]) {
ffree_sample_block(harmonicity, "yin_fetch");
harmonicity = NULL; /* make sure we don't free it again */
harmonicity_ptr = NULL;
} else if (!susp->chan[1]->block) {
snd_list_type snd_list = snd_list_create((snd_susp_type) susp);
if (!susp->chan[1]) {
ffree_snd_list(snd_list, "yin_fetch");
} else {
susp->chan[1]->u.next = snd_list;
}
}
if (susp->chan[1]) {
susp->chan[1]->block = harmonicity;
if (susp->chan[1]->u.next->u.susp != (snd_susp_type) susp) {
nyquist_printf("didn't find susp at end of list for chan 1\n");
}
} else if (harmonicity) { /* we allocated harmonicity, but don't need it anymore due to GC */
ffree_sample_block(harmonicity, "yin_fetch");
harmonicity_ptr = NULL;
}
}
while (cnt < max_sample_block_len) { /* outer loop */
/* first, compute how many samples to generate in inner loop: */
/* don't overflow the output sample block */
togo = (max_sample_block_len - cnt) * susp->stepsize;
/* don't run past the s input sample block */
susp_check_term_log_samples(s, s_ptr, s_cnt);
togo = min(togo, susp->s_cnt);
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo/susp->stepsize) {
togo = (susp->terminate_cnt - (susp->susp.current + cnt)) * susp->stepsize;
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop = 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the output block)
*/
if (to_stop < togo/susp->stepsize) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we can set
* the logical stop flag on this output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new block a the LST */
togo = to_stop * susp->stepsize;
}
}
n = togo;
s_ptr_reg = susp->s_ptr;
fillptr_reg = susp->fillptr;
if (n) do { /* the inner sample computation loop */
*fillptr_reg++ = *s_ptr_reg++;
if (fillptr_reg >= endptr_reg) {
float f0;
float harmonicity;
yin_compute(susp, &f0, &harmonicity);
if (f0_ptr) *f0_ptr++ = f0;
if (harmonicity_ptr) *harmonicity_ptr++ = harmonicity;
cnt++;
fillptr_reg -= susp->stepsize;
}
} while (--n); /* inner loop */
/* using s_ptr_reg is a bad idea on RS/6000: */
susp->s_ptr += togo;
susp->fillptr = fillptr_reg;
susp_took(s_cnt, togo);
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* yin_fetch */
void yin_mark(yin_susp_type susp)
{
sound_xlmark(susp->s);
}
void yin_free(yin_susp_type susp)
{
int j;
boolean active = false;
/* stdputstr("yin_free: "); */
for (j = 0; j < 2; j++) {
if (susp->chan[j]) {
if (susp->chan[j]->refcnt) active = true;
else {
susp->chan[j] = NULL;
/* nyquist_printf("deactivating channel %d\n", j); */
}
}
}
if (!active) {
/* stdputstr("all channels freed, freeing susp now\n"); */
ffree_generic(susp, sizeof(yin_susp_node), "yin_free");
sound_unref(susp->s);
free(susp->block);
free(susp->temp);
}
}
void yin_print_tree(yin_susp_type susp, int n)
{
indent(n);
stdputstr("s:");
sound_print_tree_1(susp->s, n);
}
LVAL snd_make_yin(sound_type s, double low_step, double high_step, long stepsize)
{
LVAL result;
int j;
register yin_susp_type susp;
rate_type sr = s->sr;
time_type t0 = s->t0;
falloc_generic(susp, yin_susp_node, "snd_make_yin");
susp->susp.fetch = yin_fetch;
susp->terminate_cnt = UNKNOWN;
/* initialize susp state */
susp->susp.free = yin_free;
susp->susp.sr = sr / stepsize;
susp->susp.t0 = t0;
susp->susp.mark = yin_mark;
susp->susp.print_tree = yin_print_tree;
susp->susp.name = "yin";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s);
susp->susp.current = 0;
susp->s = s;
susp->s_cnt = 0;
susp->m = (long) (sr / step_to_hz(high_step));
if (susp->m < 2) susp->m = 2;
/* add 1 to make sure we round up */
susp->middle = (long) (sr / step_to_hz(low_step)) + 1;
susp->blocksize = susp->middle * 2;
susp->stepsize = stepsize;
/* blocksize must be at least step size to implement stepping */
if (susp->stepsize > susp->blocksize) susp->blocksize = susp->stepsize;
susp->block = (sample_type *) malloc(susp->blocksize * sizeof(sample_type));
susp->temp = (float *) malloc((susp->middle - susp->m + 1) * sizeof(float));
susp->fillptr = susp->block;
susp->endptr = susp->block + susp->blocksize;
xlsave1(result);
result = newvector(2); /* create array for F0 and harmonicity */
/* create sounds to return */
for (j = 0; j < 2; j++) {
sound_type snd = sound_create((snd_susp_type)susp,
susp->susp.t0, susp->susp.sr, 1.0);
LVAL snd_lval = cvsound(snd);
/* nyquist_printf("yin_create: sound %d is %x, LVAL %x\n", j, snd, snd_lval); */
setelement(result, j, snd_lval);
susp->chan[j] = snd->list;
}
xlpop();
return result;
}
LVAL snd_yin(sound_type s, double low_step, double high_step, long stepsize)
{
sound_type s_copy = sound_copy(s);
return snd_make_yin(s_copy, low_step, high_step, stepsize);
}
|