File: yin.c

package info (click to toggle)
audacity 2.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 86,844 kB
  • sloc: ansic: 225,005; cpp: 221,240; sh: 27,327; python: 16,896; makefile: 8,186; lisp: 8,002; perl: 317; xml: 307; sed: 16
file content (583 lines) | stat: -rw-r--r-- 20,997 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
#include "stdio.h"
#ifdef UNIX
#include "sys/file.h"
#endif
#ifndef mips
#include "stdlib.h"
#endif
#include "sndfmt.h"
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "yin.h"


void yin_free();

/* for multiple channel results, one susp is shared by all sounds */
/* the susp in turn must point back to all sound list tails */

typedef struct yin_susp_struct {
    snd_susp_node susp;
    long terminate_cnt;
    boolean logically_stopped;
    sound_type s;
    long s_cnt;
    sample_block_values_type s_ptr;
    long blocksize;
    long stepsize;
    sample_type *block;
    float *temp;
    sample_type *fillptr;
    sample_type *endptr;
    snd_list_type chan[2];      /* array of back pointers */
    long cnt;   /* how many sample frames to read */
    long m;
    long middle;
} yin_susp_node, *yin_susp_type;

/* DEBUG CODE: 
 *   use this to print the sound created by yin

sound_type ysnd[2];

void print_ysnds(char *label, yin_susp_type susp)
{
    int i;
    printf("At %s:\n", label);
    for (i = 0; i < 2; i++) {
        snd_list_type snd_list;
        if (!susp->chan[i]) continue;
        snd_list = ysnd[i]->list;
        printf("  ysnd[%d]:\n", i, label);
        while (true) {
            printf("    snd_list %p  block %p\n", snd_list, snd_list->block);
            if (snd_list == zero_snd_list) {
                printf("      (zero_snd_list)\n");
                break;
            } else if (!snd_list->block) {
                printf("    susp %p (%s)\n", snd_list->u.susp,
                       snd_list->u.susp->name);
                break;
            }
            snd_list = snd_list->u.next;
        }
    }
    printf("  susp->chan[0] = %p, susp->chan[1] = %p\n", 
           susp->chan[0], susp->chan[1]);

}
 * END OF DEBUG CODE
 */

// Uses cubic interpolation to return the value of x such
// that the function defined by f(0), f(1), f(2), and f(3)
// is maximized.
//
float CubicMaximize(float y0, float y1, float y2, float y3)
{
  // Find coefficients of cubic

  float a, b, c, d;
  float da, db, dc;
  float discriminant;
  float x1, x2;
  float dda, ddb;
  
  a = (float) (y0/-6.0 + y1/2.0 - y2/2.0 + y3/6.0);
  b = (float) (y0 - 5.0*y1/2.0 + 2.0*y2 - y3/2.0);
  c = (float) (-11.0*y0/6.0 + 3.0*y1 - 3.0*y2/2.0 + y3/3.0);
  d = y0;

  // Take derivative

  da = 3*a;
  db = 2*b;
  dc = c;

  // Find zeroes of derivative using quadratic equation
  
  discriminant = db*db - 4*da*dc;
  if (discriminant < 0.0)
    return -1.0; // error
  
  x1 = (float) ((-db + sqrt(discriminant)) / (2 * da));
  x2 = (float) ((-db - sqrt(discriminant)) / (2 * da));
  
  // The one which corresponds to a local _maximum_ in the
  // cubic is the one we want - the one with a negative
  // second derivative
  
  dda = 2*da;
  ddb = db;
  
  if (dda*x1 + ddb < 0)
    return x1;
  else
    return x2;
}


float parabolic_interp(float x1, float x2, float x3, float y1, float y2, 
                       float y3, float *min)
{
    float a, b, c;
    float pos;

    //  y1=a*x1^2+b*x1+c
    //  y2=a*x2^2+b*x2+c
    //  y3=a*x3^2+b*x3+c

    //  y1-y2=a*(x1^2-x2^2)+b*(x1-x2)
    //  y2-y3=a*(x2^2-x3^2)+b*(x2-x3)

    //  (y1-y2)/(x1-x2)=a*(x1+x2)+b
    //  (y2-y3)/(x2-x3)=a*(x2+x3)+b

    a = ((y1 - y2) / (x1 - x2) - (y2 - y3) / (x2 - x3)) / (x1 - x3);
    b = (y1 - y2) / (x1 - x2) - a * (x1 + x2);
    c = y1 - a * x1 * x1 - b * x1;

    // dy/dx = 2a*x + b = 0
  
    pos = (float) (-b / (a + a));
    *min = /* ax^2 + bx + c */ (a * pos + b) * pos + c;
    return pos;
}


void yin_compute(yin_susp_type susp, float *pitch, float *harmonicity)
    // samples is a buffer of samples
    // n is the number of samples, equals twice longest period, must be even
    // m is the shortest period in samples
    // results is an array of size n/2 - m + 1, the number of different lags
{

    float *samples = susp->block;
    int middle = susp->middle;
    int m = susp->m;
    float threshold = 0.1F;
    float *results = susp->temp;

    // work from the middle of the buffer:
    int i, j; // loop counters
    // how many different lags do we compute?
    float left_energy = 0;
    float right_energy = 0;
    float left, right, non_periodic;
    float auto_corr=0;
    float cum_sum=0.0;
    float period;
    int min_i;

    // for each window, we keep the energy so we can compute the next one 
    // incrementally. First, we need to compute the energies for lag m-1:
    for (i = 0; i < m - 1; i++) {
        left = samples[middle - 1 - i];
        left_energy += left * left;
        right = samples[middle + i];
        right_energy += right * right;
    }

    for (i = m; i <= middle; i++) {
        // i is the lag and the length of the window
        // compute the energy for left and right
        left = samples[middle - i];
        left_energy += left * left;
        right = samples[middle - 1 + i];
 
        right_energy += right * right;
        //  compute the autocorrelation
        auto_corr = 0;
        for (j = 0; j < i; j++) {
            auto_corr += samples[middle - i + j] * samples[middle + j];
        }
         non_periodic = (left_energy + right_energy - 2 * auto_corr);// / i;
        results[i - m] = non_periodic;

    }

    // normalize by the cumulative sum
    for (i = m; i <= middle; i++) {
        cum_sum += results[i - m];
        results[i - m]=results[i - m] / (cum_sum / (i - m + 1));
    }

    min_i = m;  // value of initial estimate
    for (i = m; i <= middle; i++) {
        if (results[i - m] < threshold) {
            min_i=i;
            break;
        } else if (results[i - m] < results[min_i - m])
            min_i=i;
    }

    // This step is not part of the published algorithm. Just because we
    // found a point below the threshold does not mean we are at a local
    // minimum. E.g. a sine input will go way below threshold, so the 
    // period estimate at the threshold crossing will be too low. In this
    // step, we continue to scan forward until we reach a local minimum.
    while (min_i < middle && results[min_i + 1 - m] < results[min_i - m]) {
        min_i++;
    }

    // use parabolic interpolation to improve estimate
    if (i>m && i<middle) {
        period = parabolic_interp((float)(min_i - 1), (float)(min_i), 
                                  (float)(min_i + 1), 
                                  results[min_i - 1 - m], results[min_i - m], 
                                  results[min_i + 1 - m], harmonicity);
    } else {
        period = (float) min_i;
    }
    *harmonicity = results[min_i - m];
    *pitch = (float) hz_to_step((float) (susp->susp.sr * susp->stepsize) / period);
}


/* yin_fetch - compute F0 and harmonicity using YIN approach.  */
/*
 * The pitch (F0) is determined by finding two periods whose
 * inner product accounts for almost all of the energy. Let X and Y
 * be adjacent vectors of length N in the sample stream. Then, 
 *    if 2X*Y > threshold * (X*X + Y*Y)
 *    then the period is given by N
 * In the algorithm, we compute different sizes until we find a
 * peak above threshold. Then, we use cubic interpolation to get
 * a precise value. If no peak above threshold is found, we return
 * the first peak. The second channel returns the value 2X*Y/(X*X+Y*Y)
 * which is refered to as the "harmonicity" -- the amount of energy
 * accounted for by periodicity.
 *
 * Low sample rates are advised because of the high cost of computing
 * inner products (fast autocorrelation is not used).
 *
 * The result is a 2-channel signal running at the requested rate.
 * The first channel is the estimated pitch, and the second channel
 * is the harmonicity.
 *
 * This code is adopted from multiread, currently the only other
 * multichannel suspension in Nyquist. Comments from multiread include:
 * The susp is shared by all channels.  The susp has backpointers
 * to the tail-most snd_list node of each channel, and it is by
 * extending the list at these nodes that sounds are read in.
 * To avoid a circularity, the reference counts on snd_list nodes
 * do not include the backpointers from this susp.  When a snd_list
 * node refcount goes to zero, the yin susp's free routine
 * is called.  This must scan the backpointers to find the node that
 * has a zero refcount (the free routine is called before the node
 * is deallocated, so this is safe).  The backpointer is then set
 * to NULL.  When all backpointers are NULL, the susp itself is
 * deallocated, because it can only be referenced through the
 * snd_list nodes to which there are backpointers.
 */
void yin_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
    yin_susp_type susp = (yin_susp_type) a_susp;
    int cnt = 0; /* how many samples computed */
    int togo;
    int n;
    int i; 
    sample_block_type f0;
    sample_block_values_type f0_ptr = NULL;
    sample_block_type harmonicity;
    sample_block_values_type harmonicity_ptr = NULL;

    register sample_block_values_type s_ptr_reg;
    register sample_type *fillptr_reg;
    register sample_type *endptr_reg = susp->endptr;

    /* DEBUG: print_ysnds("top of yin_fetch", susp); */
    if (susp->chan[0]) {
        falloc_sample_block(f0, "yin_fetch");
        f0_ptr = f0->samples;
        /* Since susp->chan[i] exists, we want to append a block of samples.
         * The block, out, has been allocated.  Before we insert the block,
         * we must figure out whether to insert a new snd_list_type node for
         * the block.  Recall that before SND_get_next is called, the last
         * snd_list_type in the list will have a null block pointer, and the
         * snd_list_type's susp field points to the suspension (in this case,
         * susp).  When SND_get_next (in sound.c) is called, it appends a new
         * snd_list_type and points the previous one to internal_zero_block 
         * before calling this fetch routine.  On the other hand, since 
         * SND_get_next is only going to be called on one of the channels, the
         * other channels will not have had a snd_list_type appended.
         * SND_get_next does not tell us directly which channel it wants (it
         * doesn't know), but we can test by looking for a non-null block in the
         * snd_list_type pointed to by our back-pointers in susp->chan[].  If
         * the block is null, the channel was untouched by SND_get_next, and
         * we should append a snd_list_type.  If it is non-null, then it
         * points to internal_zero_block (the block inserted by SND_get_next)
         * and a new snd_list_type has already been appended.
         */
        /* Before proceeding, it may be that garbage collection ran when we
         * allocated out, so check again to see if susp->chan[j] is Null:
         */
        if (!susp->chan[0]) {
            ffree_sample_block(f0, "yin_fetch");
            f0 = NULL; /* make sure we don't free it again */
            f0_ptr = NULL; /* make sure we don't output f0 samples */
        } else if (!susp->chan[0]->block) {
            snd_list_type snd_list = snd_list_create((snd_susp_type) susp);
            /* printf("created snd_list %x for chan 0 with susp %x\n", 
                   snd_list, snd_list->u.susp); */
            /* Now we have a snd_list to append to the channel, but a very
             * interesting thing can happen here.  snd_list_create, which
             * we just called, MAY have invoked the garbage collector, and
             * the GC MAY have freed all references to this channel, in which
             * case yin_free(susp) will have been called, and susp->chan[0]
             * will now be NULL!
             */
            if (!susp->chan[0]) {
                ffree_snd_list(snd_list, "yin_fetch");
            } else {
                susp->chan[0]->u.next = snd_list;
            }
        }
        /* see the note above: we don't know if susp->chan still exists */
        /* Note: We DO know that susp still exists because even if we lost
         * some channels in a GC, someone is still calling SND_get_next on
         * some channel.  I suppose that there might be some very pathological
         * code that could free a global reference to a sound that is in the
         * midst of being computed, perhaps by doing something bizarre in the
         * closure that snd_seq activates at the logical stop time of its first
         * sound, but I haven't thought that one through.
         */
        if (susp->chan[0]) {
            susp->chan[0]->block = f0;
            /* check some assertions */
            if (susp->chan[0]->u.next->u.susp != (snd_susp_type) susp) {
                nyquist_printf("didn't find susp at end of list for chan 0\n");
            }
        } else if (f0) { /* we allocated f0, but don't need it anymore due to GC */
            ffree_sample_block(f0, "yin_fetch");
            f0_ptr = NULL;
        }
    }

    /* Now, repeat for channel 1 (comments omitted) */
    if (susp->chan[1]) {
        falloc_sample_block(harmonicity, "yin_fetch");
        harmonicity_ptr = harmonicity->samples;
        if (!susp->chan[1]) {
            ffree_sample_block(harmonicity, "yin_fetch");
            harmonicity = NULL; /* make sure we don't free it again */
            harmonicity_ptr = NULL;
        } else if (!susp->chan[1]->block) {
            snd_list_type snd_list = snd_list_create((snd_susp_type) susp);
            /* printf("created snd_list %x for chan 1 with susp %x\n", 
                   snd_list, snd_list->u.susp); */
            if (!susp->chan[1]) {
                ffree_snd_list(snd_list, "yin_fetch");
            } else {
                susp->chan[1]->u.next = snd_list;
            }
        }
        if (susp->chan[1]) {
            susp->chan[1]->block = harmonicity;
            if (susp->chan[1]->u.next->u.susp != (snd_susp_type) susp) {
                nyquist_printf("didn't find susp at end of list for chan 1\n");
            }
        } else if (harmonicity) { /* we allocated harmonicity, but don't need it anymore due to GC */
            ffree_sample_block(harmonicity, "yin_fetch");
            harmonicity_ptr = NULL;
        }
    }

    /* DEBUG: print_ysnds("yin_fetch before outer loop", susp); */
    while (cnt < max_sample_block_len) { /* outer loop */
        /* first, compute how many samples to generate in inner loop: */
        /* don't overflow the output sample block */
        togo = (max_sample_block_len - cnt) * susp->stepsize;

        /* don't run past the s input sample block */
        susp_check_term_log_samples(s, s_ptr, s_cnt);
        togo = min(togo, susp->s_cnt);

        /* don't run past terminate time */
        if (susp->terminate_cnt != UNKNOWN &&
            susp->terminate_cnt <= susp->susp.current + cnt + togo/susp->stepsize) {
            togo = (susp->terminate_cnt - (susp->susp.current + cnt)) * susp->stepsize;
            if (togo == 0) break;
        }

        /* don't run past logical stop time */
        if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
            int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
            /* break if to_stop = 0 (we're at the logical stop)
             * AND cnt > 0 (we're not at the beginning of the output block)
             */
            if (to_stop < togo/susp->stepsize) {
                if (to_stop == 0) {
                    if (cnt) {
                        togo = 0;
                        break;
                    } else /* keep togo as is: since cnt == 0, we can set
                            * the logical stop flag on this output block
                            */
                        susp->logically_stopped = true;
                } else /* limit togo so we can start a new block a the LST */
                    togo = to_stop * susp->stepsize;
            }
        }
        n = togo;
        s_ptr_reg = susp->s_ptr;
        fillptr_reg = susp->fillptr;
        if (n) do { /* the inner sample computation loop */
            *fillptr_reg++ = *s_ptr_reg++;
            if (fillptr_reg >= endptr_reg) {
                float f0;
                float harmonicity;
                yin_compute(susp, &f0, &harmonicity);
                if (f0_ptr) *f0_ptr++ = f0;
                if (harmonicity_ptr) *harmonicity_ptr++ = harmonicity;
                cnt++;
                // shift block by stepsize
                memmove(susp->block, susp->block + susp->stepsize,
                        sizeof(sample_type) * (susp->blocksize - susp->stepsize));
                fillptr_reg -= susp->stepsize;
            }
        } while (--n); /* inner loop */

        /* using s_ptr_reg is a bad idea on RS/6000: */
        susp->s_ptr += togo;
        susp->fillptr = fillptr_reg;
        susp_took(s_cnt, togo);
    } /* outer loop */

    /* test for termination */
    if (togo == 0 && cnt == 0) {
        /* single channels code: snd_list_terminate(snd_list); */
        for (i = 0; i < 2; i++) {
            if (susp->chan[i]) {
                snd_list_type the_snd_list = susp->chan[i];
                susp->chan[i] = the_snd_list->u.next;
                snd_list_terminate(the_snd_list);
            }
        }
    } else {
        /* single channel code:
             snd_list->block_len = cnt;
         */
        susp->susp.current += cnt;
        for (i = 0; i < 2; i++) {
            if (susp->chan[i]) {
                susp->chan[i]->block_len = cnt;
                susp->chan[i] = susp->chan[i]->u.next;
            }
        }
    }

    /* test for logical stop */
    if (susp->logically_stopped) {
        /* single channel code: snd_list->logically_stopped = true; */
        if (susp->chan[0]) susp->chan[0]->logically_stopped = true;
        if (susp->chan[1]) susp->chan[1]->logically_stopped = true;
    } else if (susp->susp.log_stop_cnt == susp->susp.current) {
        susp->logically_stopped = true;
    }
} /* yin_fetch */

  
void yin_mark(snd_susp_type a_susp)
{
    yin_susp_type susp = (yin_susp_type) a_susp;
    sound_xlmark(susp->s);
}


void yin_free(snd_susp_type a_susp)
{
    yin_susp_type susp = (yin_susp_type) a_susp;
    int j;
    boolean active = false;
/*    stdputstr("yin_free: "); */

    for (j = 0; j < 2; j++) {
        if (susp->chan[j]) {
            if (susp->chan[j]->refcnt) active = true;
            else {
                susp->chan[j] = NULL;
                /* nyquist_printf("deactivating channel %d\n", j); */
            }
        }
    }
    if (!active) {
/*      stdputstr("all channels freed, freeing susp now\n"); */
        ffree_generic(susp, sizeof(yin_susp_node), "yin_free");
        sound_unref(susp->s);
        free(susp->block);
        free(susp->temp);
    }
}


void yin_print_tree(snd_susp_type a_susp, int n)
{
    yin_susp_type susp = (yin_susp_type) a_susp;
    indent(n);
    stdputstr("s:");
    sound_print_tree_1(susp->s, n);
}


LVAL snd_make_yin(sound_type s, double low_step, double high_step, long stepsize)
{
    LVAL result;
    int j;
    register yin_susp_type susp;
    rate_type sr = s->sr;
    time_type t0 = s->t0;

    falloc_generic(susp, yin_susp_node, "snd_make_yin");
    susp->susp.fetch = yin_fetch;
    susp->terminate_cnt = UNKNOWN;
    
    /* initialize susp state */
    susp->susp.free = yin_free;
    susp->susp.sr = sr / stepsize;
    susp->susp.t0 = t0;
    susp->susp.mark = yin_mark;
    susp->susp.print_tree = yin_print_tree;
    susp->susp.name = "yin";
    susp->logically_stopped = false;
    susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s);
    susp->susp.current = 0;
    susp->s = s;
    susp->s_cnt = 0;
    susp->m = (long) (sr / step_to_hz(high_step));
    if (susp->m < 2) susp->m = 2;
    /* add 1 to make sure we round up */
    susp->middle = (long) (sr / step_to_hz(low_step)) + 1;
    susp->blocksize = susp->middle * 2;
    susp->stepsize = stepsize;
    /* blocksize must be at least step size to implement stepping */
    if (susp->stepsize > susp->blocksize) susp->blocksize = susp->stepsize;
    susp->block = (sample_type *) malloc(susp->blocksize * sizeof(sample_type));
    susp->temp = (float *) malloc((susp->middle - susp->m + 1) * sizeof(float));
    susp->fillptr = susp->block;
    susp->endptr = susp->block + susp->blocksize;

    xlsave1(result);

    result = newvector(2);      /* create array for F0 and harmonicity */
    /* create sounds to return */
    for (j = 0; j < 2; j++) {
        sound_type snd = sound_create((snd_susp_type)susp, 
                                      susp->susp.t0, susp->susp.sr, 1.0);
        LVAL snd_lval = cvsound(snd);
/*      nyquist_printf("yin_create: sound %d is %x, LVAL %x\n", j, snd, snd_lval); */
        setelement(result, j, snd_lval);
        susp->chan[j] = snd->list;
        /* DEBUG: ysnd[j] = snd; */
    }
    xlpop();
    return result;
}


LVAL snd_yin(sound_type s, double low_step, double high_step, long stepsize)
{
    sound_type s_copy = sound_copy(s);
    return snd_make_yin(s_copy, low_step, high_step, stepsize);
}