File: revert-convolve.patch

package info (click to toggle)
audacity 2.1.2-2
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 86,844 kB
  • sloc: ansic: 225,005; cpp: 221,240; sh: 27,327; python: 16,896; makefile: 8,186; lisp: 8,002; perl: 317; xml: 307; sed: 16
file content (366 lines) | stat: -rw-r--r-- 13,475 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
--- orig/nyquist/nyqsrc/convolve.c	2015-05-04 12:41:01.497976900 -0500
+++ nyquist/nyqsrc/convolve.c	2015-05-04 12:40:32.047737200 -0500
@@ -6,34 +6,6 @@
  * of the first parameter.
  */
 
-/* Original convolve.c modified to do fast convolution. Here are some
- * notes:
- *    The first arg is arbitrary length. The second arg is the impulse
- * response, which is converted into a table. Tables have limited maximum
- * size, which is good because we're going to use a single FFT for the
- * whole impulse response.
- *
- * The fast convolution works like this: 
- *   inputs are x_snd and h_snd. 
- *   Make h_snd into a table ht of size N, where N is a power of 2. 
- *   Copy ht with zero fill into H of size 2N.
- *   Compute FFT of H in place.
- *   Iterate:
- *       Copy N samples of x_snd into X and zero fill to size 2N.
- *       Compute FFT of X in place.
- *       Multiply X by H (result goes into X).
- *       Compute IFFT of X in place
- *       Add X to R.
- *       Now N samples of R can be output.
- *       Copy 2nd half of R to first half and zero the 2nd half.
- *         (this is actually done first, and the first time does
- *          nothing because R is initially filled with zeros)
- *
- * Length of output is length of x input + length of h
- */
-
-#define _USE_MATH_DEFINES 1 /* for Visual C++ to get M_LN2 */
-#include <math.h>
 #include "stdio.h"
 #ifndef mips
 #include "stdlib.h"
@@ -43,8 +15,6 @@
 
 #include "falloc.h"
 #include "cext.h"
-#include "fftlib.h"
-#include "fftext.h"
 #include "convolve.h"
 
 void convolve_free();
@@ -58,13 +28,13 @@
     long x_snd_cnt;
     sample_block_values_type x_snd_ptr;
 
-    sample_type *H; // the FFT of h_snd
-    int h_len; // true length of H
-    int N; // length of block, FFTs are of size 2*N
-    int M; // log2 of 2*N, the FFT size
-    sample_type *X;
-    sample_type *R; // result buffer where output is summed
-    sample_type *R_current;
+    table_type table;
+    sample_type *h_buf;
+    double length_of_h;
+    long h_len;
+    long x_buf_len;
+    sample_type *x_buffer_pointer;
+    sample_type *x_buffer_current;
 } convolve_susp_node, *convolve_susp_type;
 
 
@@ -82,9 +52,8 @@
 }
 
 
-void convolve_s_fetch(snd_susp_type a_susp, snd_list_type snd_list)
+void convolve_s_fetch(register convolve_susp_type susp, snd_list_type snd_list)
 {
-    convolve_susp_type susp = (convolve_susp_type) a_susp;
     int cnt = 0; /* how many samples computed */
     int togo;
     int n;
@@ -93,9 +62,13 @@
 
     register sample_block_values_type out_ptr_reg;
 
-    sample_type *R = susp->R;
-    sample_type *R_current;
-    int N = susp->N;
+    register sample_type * h_buf_reg;
+    register long h_len_reg;
+    register long x_buf_len_reg;
+    register sample_type * x_buffer_pointer_reg;
+    register sample_type * x_buffer_current_reg;
+    register sample_type x_snd_scale_reg = susp->x_snd->scale;
+    register sample_block_values_type x_snd_ptr_reg;
     falloc_sample_block(out, "convolve_s_fetch");
     out_ptr = out->samples;
     snd_list->block = out;
@@ -104,60 +77,43 @@
         /* first compute how many samples to generate in inner loop: */
         /* don't overflow the output sample block: */
         togo = max_sample_block_len - cnt;
-        /* if we need output samples, generate them here */
-        if (susp->R_current >= R + N) {
-            /* Copy N samples of x_snd into X and zero fill to size 2N */
-            int i = 0;
-            sample_type *X = susp->X;
-            sample_type *H = susp->H;
-            int to_copy;
-            while (i < N) {
+
+	    /* don't run past the x_snd input sample block: */
+	    /* based on susp_check_term_log_samples, but offset by h_len */
+
+	    /* THIS IS EXPANDED BELOW
+	     * susp_check_term_log_samples(x_snd, x_snd_ptr, x_snd_cnt);
+	     */
                 if (susp->x_snd_cnt == 0) {
                     susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt);
+	      
+	        /* THIS IS EXPANDED BELOW
+	         *logical_stop_test(x_snd, susp->x_snd_cnt);
+	         */
                     if (susp->x_snd->logical_stop_cnt == 
                         susp->x_snd->current - susp->x_snd_cnt) {
                         min_cnt(&susp->susp.log_stop_cnt, susp->x_snd, 
                                 (snd_susp_type) susp, susp->x_snd_cnt);
                     }
-                }
+
+	        /* THIS IS EXPANDED BELOW
+	         * terminate_test(x_snd_ptr, x_snd, susp->x_snd_cnt);
+	         */
                 if (susp->x_snd_ptr == zero_block->samples) {
+	            /* ### modify this to terminate at an offset of (susp->h_len) */
+                /* Note: in the min_cnt function, susp->x_snd_cnt is *subtracted*
+                 *   from susp->x_snd->current to form the terminate time, so to
+                 *   increase the time, we need to *subtract* susp->h_len, which
+                 *   due to the double negative, *adds* susp->h_len to the ultimate
+                 *   terminate time calculation.
+                 */
                     min_cnt(&susp->terminate_cnt, susp->x_snd,
-                            (snd_susp_type) susp, susp->x_snd_cnt);
-                    /* extend the output to include impulse response */
-                    susp->terminate_cnt += susp->h_len;
+			            (snd_susp_type) susp, susp->x_snd_cnt - susp->h_len);
                 }
-                /* copy no more than the remaining space and no more than
-                 * the amount remaining in the block
-                 */
-                to_copy = min(N - i, susp->x_snd_cnt);
-                memcpy(X + i, susp->x_snd_ptr, 
-                       to_copy * sizeof(*susp->x_snd_ptr));
-                susp->x_snd_ptr += to_copy;
-                susp->x_snd_cnt -= to_copy;
-                i += to_copy;
-            }
-            /* zero fill to size 2N */
-            memset(X + N, 0, N * sizeof(X[0]));
-            /* Compute FFT of X in place */
-            fftInit(susp->M);
-            rffts(X, susp->M, 1);
-            /* Multiply X by H (result goes into X) */
-            rspectprod(X, H, X, N * 2);
-            /* Compute IFFT of X in place */
-            riffts(X, susp->M, 1);
-            /* Shift R, zero fill, add X, all in one loop */
-            for (i = 0; i < N; i++) {
-                R[i] = R[i + N] + X[i];
-                R[i + N] = X[i + N];
-            }
-            /* now N samples of R can be output */
-            susp->R_current = R;
-        }
-        /* compute togo, the number of samples to "compute" */
-        /* can't use more than what's left in R. R_current is
-           the next sample of R, so what's left is N - (R - R_current) */
-        R_current = susp->R_current;
-        togo = min(togo, N - (R_current - R));
+	    }
+
+
+	    togo = min(togo, susp->x_snd_cnt);
 
         /* don't run past terminate time */
         if (susp->terminate_cnt != UNKNOWN &&
@@ -166,23 +122,69 @@
             if (togo == 0) break;
         }
 
+
         /* don't run past logical stop time */
-        if (!susp->logically_stopped &&
-            susp->susp.log_stop_cnt !=  UNKNOWN &&
-            susp->susp.log_stop_cnt <= susp->susp.current + cnt + togo) {
-            togo = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
-            if (togo == 0) break;
+	    if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
+	        int to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
+	        /* break if to_stop == 0 (we're at the logical stop)
+	         * AND cnt > 0 (we're not at the beginning of the
+	         * output block).
+	         */
+	        if (to_stop < togo) {
+		    if (to_stop == 0) {
+		        if (cnt) {
+			    togo = 0;
+			    break;
+		        } else /* keep togo as is: since cnt == 0, we
+		                * can set the logical stop flag on this
+		                * output block
+		                */
+			    susp->logically_stopped = true;
+		    } else /* limit togo so we can start a new
+		            * block at the LST
+		            */
+		        togo = to_stop;
+	        }
         }       
 
         n = togo;
+	    h_buf_reg = susp->h_buf;
+	    h_len_reg = susp->h_len;
+	    x_buf_len_reg = susp->x_buf_len;
+	    x_buffer_pointer_reg = susp->x_buffer_pointer;
+	    x_buffer_current_reg = susp->x_buffer_current;
+	    x_snd_ptr_reg = susp->x_snd_ptr;
         out_ptr_reg = out_ptr;
         if (n) do { /* the inner sample computation loop */
-            *out_ptr_reg++ = (sample_type) *R_current++;
+            long i; double sum;
+            /* see if we've reached end of x_buffer */
+            if ((x_buffer_pointer_reg + x_buf_len_reg) <= (x_buffer_current_reg + h_len_reg)) {
+                /* shift x_buffer from current back to base */
+                for (i = 1; i < h_len_reg; i++) {
+                    x_buffer_pointer_reg[i-1] = x_buffer_current_reg[i];
+                }    
+                /* this will be incremented back to x_buffer_pointer_reg below */
+                x_buffer_current_reg = x_buffer_pointer_reg - 1;
+            }
+
+            x_buffer_current_reg++;
+
+            x_buffer_current_reg[h_len_reg - 1] = (x_snd_scale_reg * *x_snd_ptr_reg++);
+
+            sum = 0.0;
+            for (i = 0; i < h_len_reg; i++) {
+                sum += x_buffer_current_reg[i] * h_buf_reg[i];
+            }
+
+            *out_ptr_reg++ = (sample_type) sum;
 	} while (--n); /* inner loop */
 
-        /* using R_current is a bad idea on RS/6000: */
-        susp->R_current += togo;
+	    susp->x_buffer_pointer = x_buffer_pointer_reg;
+	    susp->x_buffer_current = x_buffer_current_reg;
+	    /* using x_snd_ptr_reg is a bad idea on RS/6000: */
+	    susp->x_snd_ptr += togo;
         out_ptr += togo;
+	    susp_took(x_snd_cnt, togo);
         cnt += togo;
     } /* outer loop */
 
@@ -202,9 +204,10 @@
 } /* convolve_s_fetch */
 
 
-void convolve_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
+void convolve_toss_fetch(susp, snd_list)
+  register convolve_susp_type susp;
+  snd_list_type snd_list;
 {
-    convolve_susp_type susp = (convolve_susp_type) susp;
     time_type final_time = susp->susp.t0;
     long n;
 
@@ -219,36 +222,32 @@
     susp->x_snd_ptr += n;
     susp_took(x_snd_cnt, n);
     susp->susp.fetch = susp->susp.keep_fetch;
-    (*(susp->susp.fetch))(a_susp, snd_list);
+    (*(susp->susp.fetch))(susp, snd_list);
 }
 
 
-void convolve_mark(snd_susp_type a_susp)
+void convolve_mark(convolve_susp_type susp)
 {
-    convolve_susp_type susp = (convolve_susp_type) a_susp;
     sound_xlmark(susp->x_snd);
 }
 
 
-void convolve_free(snd_susp_type a_susp)
+void convolve_free(convolve_susp_type susp)
 {
-    convolve_susp_type susp = (convolve_susp_type) a_susp;
-    free(susp->R);
-    free(susp->X);
-    free(susp->H);
-    sound_unref(susp->x_snd);
+    table_unref(susp->table); 
+    free(susp->x_buffer_pointer);    sound_unref(susp->x_snd);
     ffree_generic(susp, sizeof(convolve_susp_node), "convolve_free");
 }
 
 
-void convolve_print_tree(snd_susp_type a_susp, int n)
+void convolve_print_tree(convolve_susp_type susp, int n)
 {
-    convolve_susp_type susp = (convolve_susp_type) a_susp;
     indent(n);
     stdputstr("x_snd:");
     sound_print_tree_1(susp->x_snd, n);
 }
 
+
 sound_type snd_make_convolve(sound_type x_snd, sound_type h_snd)
 {
     register convolve_susp_type susp;
@@ -256,38 +255,16 @@
     time_type t0 = x_snd->t0;
     sample_type scale_factor = 1.0F;
     time_type t0_min = t0;
-    table_type table;
-    double log_len;
     falloc_generic(susp, convolve_susp_node, "snd_make_convolve");
-    table = sound_to_table(h_snd);
-    susp->h_len = table->length;
-    log_len = log(table->length) / M_LN2; /* compute log-base-2(length) */
-    susp->M = (int) log_len;
-    if (susp->M != log_len) susp->M++; /* round up */
-    susp->N = 1 << susp->M; /* size of data blocks */
-    susp->M++; /* M = log2(2 * N) */
-    susp->H = (sample_type *) calloc(2 * susp->N, sizeof(susp->H[0]));
-    if (!susp->H) {
-        xlabort("memory allocation failure in convolve");
-    }
-    memcpy(susp->H, table->samples, sizeof(susp->H[0]) * susp->N);
-    table_unref(table); /* don't need table now */
-    /* remaining N samples are already zero-filled */
-    if (fftInit(susp->M)) {
-        free(susp->H);
-        xlabort("fft initialization error in convolve");
-    }
-    rffts(susp->H, susp->M, 1);
-    susp->X = (sample_type *) calloc(2 * susp->N, sizeof(susp->X[0]));
-    susp->R = (sample_type *) calloc(2 * susp->N, sizeof(susp->R[0]));
-    if (!susp->X || !susp->R) {
-        free(susp->H);
-        if (susp->X) free(susp->X);
-        if (susp->R) free(susp->R);
-        xlabort("memory allocation failed in convolve");
-    }
-    susp->R_current = susp->R + susp->N;
-    susp->susp.fetch = &convolve_s_fetch;
+    susp->table = sound_to_table(h_snd);
+    susp->h_buf = susp->table->samples;
+    susp->length_of_h = susp->table->length;
+    susp->h_len = (long) susp->length_of_h;
+         h_reverse(susp->h_buf, susp->h_len);
+    susp->x_buf_len = 2 * susp->h_len;
+    susp->x_buffer_pointer = calloc((2 * (susp->h_len)), sizeof(float));
+    susp->x_buffer_current = susp->x_buffer_pointer;
+    susp->susp.fetch = convolve_s_fetch;
     susp->terminate_cnt = UNKNOWN;
     /* handle unequal start times, if any */
     if (t0 < x_snd->t0) sound_prepend_zeros(x_snd, t0);