1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
|
/*
* curvefit.cpp
* scorealign
*
* Created by Roger Dannenberg on 10/20/07.
*
*/
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "comp_chroma.h"
#include "sautils.h"
// the following are needed to get Scorealign
#include <fstream>
#include "allegro.h"
#include "audioreader.h"
#include "scorealign.h"
#include "hillclimb.h"
#include "curvefit.h"
void save_path(char *filename);
/* Curvefit class: do hill-climbing to fit lines to data
*
* This class implements the algorithm described above.
* The problem is partitioned into the general search algorithm
* (implemented in Hillclimb::optimize) and the evaluation function
* (implemented in Curvefit::evaluate). A brute-force evaluation
* would simply recompute the cost of the entire path every time,
* but note that the search algorithm works by adjusting one parameter
* at a time. This affects at most two line segments, so the rest
* contribute a cost that does not need to be recomputed. Thus the
* total cost can be computed incrementally. It is hard to see how
* to use this optimization within the general Hillclimb:optimize
* method, so to avoid making that algorithm very specific and ugly,
* I decided to hide the incremental nature of evaluate inside
* the evaluate function itself. The way this works is that evaluate
* keeps a cache of the coordinates of each line segment and the
* resulting cost of the segment. Before recomputing any segment,
* the cache is consulted. If the end points have not moved, the
* cached value is retrieved. Ideally, there should be a 3-element
* cache because endpoints are moved and then restored. (The three
* elements would hold the results of the original, changed left,
* and changed right endpoints.) The bigger cache would eliminate
* 1/3 of the computation, but the simple cache already eliminates
* about (n-2)/n of the work, so that should help a lot.
*/
class Curvefit : public Hillclimb {
public:
Curvefit(Scorealign *sa_, bool verbose_) {
sa = sa_;
verbose = verbose_;
p1_cache = p2_cache = d_cache = x = NULL;
}
~Curvefit();
virtual double evaluate();
void setup(int n);
void set_step_size(double ss);
double *get_x() { return x; }
private:
Scorealign *sa;
bool verbose;
double line_dist(int i); // get cost of line segment i
double compute_dist(int i); // compute cost of line segment i
double distance_rc(int row, int col);
double distance_xy(double x, double y);
double *p1_cache; // left endpoint y values
double *p2_cache; // right endpoint y values
double *d_cache; // cached cost of line segment
double *x; // the x values of line segment endpoints
// (the y values are in parameters[])
};
double Curvefit::evaluate()
{
double sum = 0;
// why does this loop go to n-2? Because i represents the left endpoint
// of the line segment. There are n parameters, but only n-1 segments.
for (int i = 0; i < n-1; i++) {
sum += line_dist(i); // look up in cache or recompute each segment
}
return -sum; // return negative of distance so that bigger will be better
}
double Curvefit::line_dist(int i)
{
if (p1_cache[i] == parameters[i] &&
p2_cache[i] == parameters[i+1]) {
// endpoints have not changed:
return d_cache[i];
}
// otherwise, we need to recompute and save dist in cache
double d = compute_dist(i);
p1_cache[i] = parameters[i];
p2_cache[i] = parameters[i+1];
d_cache[i] = d;
return d;
}
void Curvefit::setup(int segments)
{
// number of parameters is greater than segments because the left
// col of segment i is parameter i, so the right col of
// the last segment == parameter[segments].
Hillclimb::setup(segments + 1);
p1_cache = ALLOC(double, n);
p2_cache = ALLOC(double, n);
d_cache = ALLOC(double, n);
x = ALLOC(double, n);
int i;
// ideal frames per segment
float seg_length = ((float) (sa->last_x - sa->first_x)) / segments;
for (i = 0; i < n; i++) { // initialize cache keys to garbage
p1_cache[i] = p2_cache[i] = -999999.99;
// initialize x values
x[i] = ROUND(sa->first_x + i * seg_length);
// now initialize parameters based on pathx/pathy/time_map
// time_map has y values for each x
parameters[i] = sa->time_map[(int) x[i]];
assert(parameters[i] >= 0);
if (verbose)
printf("initial x[%d] = %g, parameters[%d] = %g\n",
i, x[i], i, parameters[i]);
step_size[i] = 0.5;
min_param[i] = 0;
max_param[i] = sa->last_y;
}
}
Curvefit::~Curvefit()
{
if (p1_cache) FREE(p1_cache);
if (p2_cache) FREE(p2_cache);
if (d_cache) FREE(d_cache);
if (x) FREE(x);
}
// distance_rc -- look up or compute distance between chroma vectors
// at row, col in similarity matrix
//
// Note: in current implementation, there is no stored representation
// of the matrix, so we have to recompute every time. It would be
// possible to store the whole matrix, but it's large and it would
// double the memory requirements (we already allocate the large
// PATH array in compare_chroma to compute the optimal path.
//
// Since distance can be computed relatively quickly, a better plan
// would be to cache values along the path. Here's a brief design
// (for the future, assuming this routine is actually a hot spot):
// Allocate a matrix that is, say, 20 x file0_frames to contain distances
// that are +/- 10 frames from the path. Initialize cells to -1.
// Allocate an array of integer offsets of size file1_frames.
// Fill in the integer offsets with the column number (pathy) value of
// the path.
// Now, to get distance_rc(row, col):
// offset = offsets[row]
// i = 10 + col - offset;
// if (i < 0 || i > 20) /* not in cache */ return compute_distance(...);
// dist = distances[20 * row + i];
// if (dist == -1) { return distances[20 * row + i] = compute_distance...}
// return dist;
//
double Curvefit::distance_rc(int row, int col)
{
double dist = sa->gen_dist(row, col);
if (dist > 20) // DEBUGGING
printf("internal error");
return dist;
}
// compute distance from distance matrix using interpolation. A least
// one of x, y should be an integer value so interpolation is only 2-way
double Curvefit::distance_xy(double x, double y)
{
int xi = (int) x;
int yi = (int) y;
if (xi == x) { // x is integer, interpolate along y axis
double d1 = distance_rc(xi, yi);
double d2 = distance_rc(xi, yi + 1);
return interpolate(yi, d1, yi + 1, d2, y);
} else if (yi == y) { // y is integer, interpolate along x axis
double d1 = distance_rc(xi, yi);
double d2 = distance_rc(xi + 1, yi);
return interpolate(xi, d1, xi + 1, d2, x);
} else {
printf("FATAL INTERNAL ERROR IN distance_xy: neither x nor y is "
"an integer\n");
assert(false);
}
}
double Curvefit::compute_dist(int i)
{
double x1 = x[i], x2 = x[i+1];
double y1 = parameters[i], y2 = parameters[i+1];
double dx = x2 - x1, dy = y2 - y1;
double sum = 0;
int n;
assert(x1 >= 0 && x2 >= 0 && y1 >= 0 && y2 >= 0);
if (dx > dy) { // evauate at each x
n = (int) dx;
for (int x = (int) x1; x < x2; x++) {
double y = interpolate(x1, y1, x2, y2, x);
sum += distance_xy(x, y);
}
} else { // evaluate at each y
n = (int) dy;
for (int y = (int) y1; y < y2; y++) {
double x = interpolate(y1, x1, y2, x2, y);
sum += distance_xy(x, y);
// printf("dist %g %d = %g\n", x, y, distance_xy(x, y));
}
}
// normalize using line length: sum/n is average distance. Multiply
// avg. distance (cost per unit length) by length to get total cost.
// Note: this gives an advantage to direct diagonal paths without bends
// because longer path lengths result in higher total cost. This also
// gives heigher weight to longer segments, although all segments are
// about the same length.
double rslt = sqrt(dx*dx + dy*dy) * sum / n;
// printf("compute_dist %d: x1 %g y1 %g x2 %g y2 %g sum %g rslt %g\n",
// i, x1, y1, x2, y2, sum, rslt);
if (rslt < 0 || rslt > 24 * n) { // DEBUGGING
printf("internal error");
}
return rslt;
}
void Curvefit::set_step_size(double ss)
{
for (int i = 0; i < n; i++) {
step_size[i] = ss;
}
}
static long curvefit_iterations;
// This is a callback from Hillclimb::optimize to report progress
// We can't know percentage completion because we don't know how
// many iterations it will take to converge, so we just report
// iterations. The SAProgress class assumes some number based
// on experience.
//
// Normally, the iterations parameter is a good indicator of work
// expended so far, but since we call Hillclimb::optimize twice
// (second time with a finer grid to search), ignore iterations
// and use curvefit_iterations, a global counter, instead. This
// assumes that curvefit_progress is called once for each iteration.
//
void curvefit_progress(void *cookie, int iterations, double best)
{
Scorealign *sa = (Scorealign *) cookie;
if (sa->progress) {
sa->progress->set_smoothing_progress(++curvefit_iterations);
}
}
void curve_fitting(Scorealign *sa, bool verbose)
{
if (verbose)
printf("Performing line-segment approximation with %gs segments.\n",
sa->line_time);
Curvefit curvefit(sa, verbose);
double *parameters;
double *x;
curvefit_iterations = 0;
// how many segments? About total time / line_time:
int segments =
(int) (0.5 + (sa->actual_frame_period_0 * (sa->last_x - sa->first_x)) /
sa->line_time);
curvefit.setup(segments);
curvefit.optimize(&curvefit_progress, sa);
// further optimization with smaller step sizes:
// this step size will interpolate 0.25s frames down to 10ms
curvefit.set_step_size(0.04);
curvefit.optimize(&curvefit_progress, sa);
parameters = curvefit.get_parameters();
x = curvefit.get_x();
// now, rewrite pathx and pathy according to segments
// pathx and pathy are generously allocated, so we can change pathlen
// each segment goes from x[i], parameters[i] to x[i+1], parameters[i+1]
int i;
int j = 0; // index into path
for (i = 0; i < segments; i++) {
int x1 = (int) x[i];
int x2 = (int) x[i+1];
int y1 = (int) parameters[i];
int y2 = (int) parameters[i+1];
int dx = x2 - x1;
int dy = y2 - y1;
if (dx >= dy) { // output point at each x
int x;
for (x = x1; x < x2; x++) {
sa->pathx[j] = x;
sa->pathy[j] = (int) (0.5 + interpolate(x1, y1, x2, y2, x));
j++;
}
} else {
int y;
for (y = y1; y < y2; y++) {
sa->pathx[j] = (int) (0.5 + interpolate(y1, x1, y2, x2, y));
sa->pathy[j] = y;
j++;
}
}
}
// output last point
sa->pathx[j] = (int) x[segments];
sa->pathy[j] = (int) (0.5 + parameters[segments]);
j++;
sa->set_pathlen(j);
}
|