1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
|
/* convolve.c -- implements (non-"fast") convolution */
/*
* Note: this code is mostly generated by translate.lsp (see convole.tran
* in the tran directory), but it has been modified by hand to extend the
* stop time to include the "tail" of the convolution beyond the length
* of the first parameter.
*/
/* Original convolve.c modified to do fast convolution. Here are some
* notes:
* The first arg is arbitrary length. The second arg is the impulse
* response, which is converted into a table. The FFT size will be
* limited to 64K, which allows convolution with up to 32K samples.
* For longer impulse responses, we'll have to do convolutions one
* 32K block at a time. I considered just limiting the convolution
* size and handling longer impulse responses in Nyquist XLISP code,
* but that would require taking FFT's of each input block multiple
* times. Here, we save the FFT's and reuse them, which should gain
* a factor of 2 in speed (we still have to inverse FFT each block
* after multiplication, which should take 1/2 the time of doing
* FFT/inverse-FFT on each block).
*
* The fast convolution works like this:
* inputs are x_snd and h_snd.
* Compute the length of h_snd in samples.
* Set fft_size = MAX_FFT_SIZE
* If length <= MAX_FFT_SIZE / 4 then
* set fft_size = (round length to power of 2) * 2
* set N = fft_size/2
* Set h_len = (length rounded up to multiple of fft_size/2) * 2
* Let L = h_len/ fft_size
* Allocate H of h_len floats
* Iterate over i from 0 to L-1:
* Copy ht with zero fill into H[i] of size fft_size,
* where each H[i] of size fft_size is filled with
* fft_size/2 samples (except for the last H[i])
* Compute FFT of H[i] in place (FFT size is fft_size)
* Allocate X of h_len floats. This represents the history
* of x_snd, which is initially all zero, so the FFT, X is all zero
* Allocate output buffers Y and R, each of size fft_size
* Iterate over j (i.e. run this to generate MAX_CONVOLVE_LEN
* samples; then j = (j + 1) mod L.
* Copy 2nd half of R to first half and zero the 2nd half.
* Note: the first time does nothing because R is initially
* filled with zeros
* Copy fft_size/2 samples of x_snd into X[j],
* where X[j] is of size fft_size and filled with
* N samples (except when x_snd terminates)
* Zero fill X[j]
* Compute FFT of X[j] in place.
* Iterate k = 0 to L-1
* Multiply X[(j-k) mod L] by H[k] (result goes into Y).
* Compute IFFT of Y in place. Y is now time domain convolution
* of two blocks of samples.
* Add Y to R.
* Now N samples of R can be output.
* For simplicity, we'll keep processing x_snd input even after x_snd
* terminates. This will avoid special cases where we do not need all
* of X[j] at the end of the convolution.
*
* Length of output is length of x input + length of h
*/
// You can turn on debugging output with: #define D if (1)
#define D if (0)
#define MAX_IR_LEN 4000000 /* maximum impulse response length */
#define MAX_LOG_FFT_SIZE 16 /* maximum fft size for convolution */
//#define MAX_LOG_FFT_SIZE 4 /* maximum fft size for convolution */
#define _USE_MATH_DEFINES 1 /* for Visual C++ to get M_LN2 */
#include <assert.h>
#include <math.h>
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "samples.h"
#include "falloc.h"
#include "cext.h"
#include "fftlib.h"
#include "fftext.h"
#include "convolve.h"
void convolve_free(snd_susp_type a_susp);
typedef struct convolve_susp_struct {
snd_susp_node susp;
int64_t terminate_cnt;
boolean know_end_of_x;
boolean logically_stopped;
sound_type x_snd;
int x_snd_cnt;
sample_block_values_type x_snd_ptr;
sample_type *X; // the FFTs of x_snd
int j; // which block are we processing? 0 <= j < L
sample_type *H; // the FFTs of h_snd
sample_type *Y; // product of X*H where we inverse FFT
int h_snd_len; // true length of h_snd in samples
int N; // length of convolution, FFTs are of size 2*N
int M; // log2 of 2*N, the FFT size
int L; // number of blocks: h_len / (2*N)
sample_type *R; // result buffer where output is summed
sample_type *R_current; // pointer to next sample to output
} convolve_susp_node, *convolve_susp_type;
/*
void h_reverse(sample_type *h, long len)
{
sample_type temp;
int i;
for (i = 0; i < len; i++) {
temp = h[i];
h[i] = h[len - 1];
h[len - 1] = temp;
len--;
}
}
*/
void convolve_s_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
convolve_susp_type susp = (convolve_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
sample_type *R = susp->R;
sample_type *R_current;
int N = susp->N;
falloc_sample_block(out, "convolve_s_fetch");
out_ptr = out->samples;
snd_list->block = out;
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* if we need output samples, generate them here */
D printf("test R_current at offset %td\n", susp->R_current - R);
if (susp->R_current >= R + N) { // true when we output half of R
int i = 0;
int k;
sample_type *Xj = susp->X + susp->j * N * 2;
sample_type *H = susp->H;
sample_type *Y = susp->Y;
int to_copy;
/* Shift R, zero fill: */
memcpy(R, R + N, N * sizeof(*R));
memset(R + N, 0, N * sizeof(*R));
/* Copy N samples of x_snd into Xj and zero fill to size 2N */
D printf("Copying N samples of x_snd into Xj at offset %td\n", Xj - susp->X);
while (i < N) {
if (susp->x_snd_cnt == 0) {
susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt);
if (susp->x_snd->logical_stop_cnt ==
susp->x_snd->current - susp->x_snd_cnt) {
min_cnt(&susp->susp.log_stop_cnt, susp->x_snd,
(snd_susp_type) susp, susp->x_snd_cnt);
}
}
/* This code is not standard. Since we extend the terminate
* count by susp->h_snd_len, the "standard" call to min_cnt()
* results in extending the terminate time forever. Instead,
* we make this code run once only by setting know_end_of_x.
*/
if (!susp->know_end_of_x &&
susp->x_snd_ptr == zero_block->samples) {
susp->terminate_cnt = susp->x_snd->current - susp->x_snd_cnt;
/* extend the output to include impulse response */
susp->terminate_cnt += susp->h_snd_len;
susp->know_end_of_x = TRUE;
}
/* copy no more than the remaining space and no more than
* the amount remaining in the block
*/
to_copy = min(N - i, susp->x_snd_cnt);
memcpy(Xj + i, susp->x_snd_ptr,
to_copy * sizeof(*susp->x_snd_ptr));
susp->x_snd_ptr += to_copy;
susp->x_snd_cnt -= to_copy;
i += to_copy;
}
/* zero fill to size 2N */
memset(Xj + N, 0, N * sizeof(Xj[0]));
D {
printf("Xj at offset %td: ", Xj - susp->X);
printf(" %d samples ", susp->N * 2);
float big = 0.0;
for (i = 0; i < susp->N * 2; i++) {
// printf("%g ", Xj[i]);
big = max(big, fabs(Xj[i]));
}
printf("MAX: %g\n", big);
}
/* Compute FFT of Xj in place */
fftInit(susp->M);
rffts(Xj, susp->M, 1);
/* convolve pairs of blocks and sum into Y */
memset(Y, 0, N * sizeof(*Y)); /* initialize sum to zero */
for (k = 0; k < susp->L; k++) {
/* Multiply Xj by H (result goes into X) */
sample_type *X = susp->X + ((susp->L + susp->j - k) % susp->L) * N * 2;
rspectprod(X, H + k * N * 2, Y, N * 2);
/* Compute IFFT of Y in place */
riffts(Y, susp->M, 1);
/* R += Y */
D { printf("Output block %d, X offset %td: ", k, X - susp->X);
printf(" %d samples ", 2 * N);
float big = 0.0;
for (i = 0; i < 2 * N; i++) {
big = max(big, fabs(Y[i]));
}
printf("MAX: %g\n", big);
}
for (i = 0; i < 2 * N; i++) {
R[i] += Y[i];
}
}
/* now N samples of R can be output */
susp->R_current = R;
D printf("R: %d samples ", susp->N);
D { float big = 0.0;
for (i = 0; i < susp->N; i++) {
// printf("%g ", R[i]);
big = max(big, fabs(R[i]));
}
printf("MAX: %g\n", big);
}
susp->j = (susp->j + 1) % susp->L;
}
/* compute togo, the number of samples to "compute" */
/* can't use more than what's left in R. R_current is
the next sample of R, so what's left is N - (R - R_current) */
R_current = susp->R_current;
togo = (int) min(togo, N - (R_current - R));
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt));
if (togo == 0) break;
}
/* don't run past logical stop time */
if (!susp->logically_stopped &&
susp->susp.log_stop_cnt != UNKNOWN &&
susp->susp.log_stop_cnt <= susp->susp.current + cnt + togo) {
togo = (int) (susp->susp.log_stop_cnt - (susp->susp.current + cnt));
D printf("susp->susp.log_stop_cnt is set to %" PRId64 "\n",
susp->susp.log_stop_cnt);
if (togo == 0) break;
}
n = togo;
out_ptr_reg = out_ptr;
if (n) do { /* the inner sample computation loop */
*out_ptr_reg++ = (sample_type) *R_current++;
} while (--n); /* inner loop */
/* using R_current is a bad idea on RS/6000: */
susp->R_current += togo;
out_ptr += togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* convolve_s_fetch */
void convolve_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
convolve_susp_type susp = (convolve_susp_type) a_susp;
time_type final_time = susp->susp.t0;
long n;
/* fetch samples from x_snd up to final_time for this block of zeros */
while ((ROUNDBIG((final_time - susp->x_snd->t0) * susp->x_snd->sr)) >=
susp->x_snd->current)
susp_get_samples(x_snd, x_snd_ptr, x_snd_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
n = (long) ROUNDBIG((final_time - susp->x_snd->t0) * susp->x_snd->sr -
(susp->x_snd->current - susp->x_snd_cnt));
susp->x_snd_ptr += n;
susp_took(x_snd_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
(*(susp->susp.fetch))(a_susp, snd_list);
}
void convolve_mark(snd_susp_type a_susp)
{
convolve_susp_type susp = (convolve_susp_type) a_susp;
sound_xlmark(susp->x_snd);
}
void convolve_free(snd_susp_type a_susp)
{
convolve_susp_type susp = (convolve_susp_type) a_susp;
free(susp->R);
free(susp->X);
free(susp->Y);
free(susp->H);
sound_unref(susp->x_snd);
ffree_generic(susp, sizeof(convolve_susp_node), "convolve_free");
}
void convolve_print_tree(snd_susp_type a_susp, int n)
{
convolve_susp_type susp = (convolve_susp_type) a_susp;
indent(n);
stdputstr("x_snd:");
sound_print_tree_1(susp->x_snd, n);
}
void fill_with_samples(sample_type *x, sound_type s, long n)
{
/* this is based on snd_fetch in samples.c */
#define CNT extra[1]
#define INDEX extra[2]
#define FIELDS 3
#define SAMPLES list->block->samples
int i;
for (i = 0; i < n; i++) {
if (!s->extra) { /* this is the first call, so fix up s */
s->extra = (int64_t *) malloc(sizeof(s->extra[0]) * FIELDS);
s->extra[0] = sizeof(s->extra[0]) * FIELDS;
s->CNT = s->INDEX = 0;
}
int icnt = (int) s->CNT; /* need this to be int type */
assert(icnt >= 0);
if (icnt == s->INDEX) {
sound_get_next(s, &icnt);
assert(icnt >= 0);
s->CNT = icnt; /* save the count back into s->extra */
s->INDEX = 0;
}
x[i] = s->SAMPLES[s->INDEX++] * s->scale;
assert(x[i] < 2);
}
D { float big = 0.0;
for (i = 0; i < n; i++) {
big = max(big, fabs(x[i]));
assert(big < 2);
}
printf("fill_with_samples n %ld scale %g max %g\n", n, s->scale, big);
}
}
sound_type snd_make_convolve(sound_type x_snd, sound_type h_snd)
{
register convolve_susp_type susp;
rate_type sr = x_snd->sr;
time_type t0 = x_snd->t0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
int64_t h_len;
int i;
// assume fft_size is maximal. We fix this later if it is wrong
long fft_size = 1 << MAX_LOG_FFT_SIZE;
if (sr != h_snd->sr) {
xlfail("convolve requires both inputs to have the same sample rates");
}
falloc_generic(susp, convolve_susp_node, "snd_make_convolve");
/* compute the length of h_snd in samples */
h_len = snd_length(h_snd, MAX_IR_LEN + 1);
if (h_len > MAX_IR_LEN) {
char emsg[100];
sprintf(emsg, "convolve maximum impulse length is %d", MAX_IR_LEN);
xlfail(emsg);
}
/* len is the impulse response length;
* the FFT size is at least double that */
if (h_len <= fft_size / 4) {
/* compute log-base-2(h_len): */;
double log_len = log((double) h_len) / M_LN2;
int log_len_int = (int) log_len;
if (log_len_int != log_len) log_len_int++; /* round up to power of 2 */
susp->M = log_len_int + 1;
} else {
susp->M = MAX_LOG_FFT_SIZE;
}
fft_size = (1 << susp->M);
D printf("fft_size %ld\n", fft_size);
susp->N = fft_size / 2;
// round h_len up to multiple of susp->N and multiply by 2
susp->h_snd_len = (int) h_len;
h_len = ((h_len + susp->N - 1) / susp->N) * susp->N * 2;
susp->L = (int) (h_len / fft_size);
// allocate memory
susp->H = (sample_type *) calloc((size_t) h_len, sizeof(susp->H[0]));
if (!susp->H) {
xlfail("memory allocation failure in convolve");
}
for (i = 0; i < susp->L; i++) {
/* copy fft_size/2 samples into each H[i] */
fill_with_samples(susp->H + i * susp->N * 2, h_snd, susp->N);
}
for (i = 0; i < susp->L; i++) {
int j;
float *H = susp->H + i * susp->N * 2;
D { printf("H_%d at %td: ", i, H - susp->H);
printf("%d samples ", susp->N * 2);
float big = 0.0;
for (j = 0; j < susp->N * 2; j++) {
big = max(big, fabs(H[j]));
assert(big < 2);
// printf("%g ", H[j]);
}
printf("big %g\n", big);
}
}
sound_unref(h_snd);
h_snd = NULL;
/* remaining N samples are already zero-filled */
if (fftInit(susp->M)) {
free(susp->H);
xlfail("fft initialization error in convolve");
}
/* take the FFT of each block of the impulse response */
for (i = 0; i < susp->L; i++) {
rffts(susp->H + i * susp->N * 2, susp->M, 1);
}
susp->X = (sample_type *) calloc((size_t) h_len, sizeof(susp->X[0]));
susp->R = (sample_type *) calloc(fft_size, sizeof(susp->R[0]));
susp->Y = (sample_type *) calloc(fft_size, sizeof(susp->Y[0]));
if (!susp->X || !susp->R || !susp->Y) {
free(susp->H);
if (susp->X) free(susp->X);
if (susp->R) free(susp->R);
if (susp->Y) free(susp->Y);
xlfail("memory allocation failed in convolve");
}
susp->R_current = susp->R + susp->N;
susp->susp.fetch = &convolve_s_fetch;
susp->terminate_cnt = UNKNOWN;
susp->know_end_of_x = FALSE;
/* handle unequal start times, if any */
if (t0 < x_snd->t0) sound_prepend_zeros(x_snd, t0);
/* minimum start time over all inputs: */
t0_min = min(x_snd->t0, t0);
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = convolve_toss_fetch;
}
/* initialize susp state */
susp->susp.free = convolve_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = convolve_mark;
susp->susp.print_tree = convolve_print_tree;
susp->susp.name = "convolve";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(x_snd);
susp->susp.current = 0;
susp->x_snd = x_snd;
susp->x_snd_cnt = 0;
susp->j = 0;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_convolve(sound_type x_snd, sound_type h_snd)
{
sound_type x_snd_copy = sound_copy(x_snd);
sound_type h_snd_copy = sound_copy(h_snd);
return snd_make_convolve(x_snd_copy, h_snd_copy);
}
|