File: downsample.c

package info (click to toggle)
audacity 3.2.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 106,704 kB
  • sloc: cpp: 277,038; ansic: 73,623; lisp: 7,761; python: 3,305; sh: 2,715; perl: 821; xml: 275; makefile: 119
file content (303 lines) | stat: -rw-r--r-- 10,722 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
/* downsample.c -- linear interpolation to a lower sample rate */

/* CHANGE LOG
 * --------------------------------------------------------------------
 * 28Apr03  dm  changes for portability and fix compiler warnings
 */



#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "downsample.h"

void down_free(snd_susp_type a_susp);


typedef struct down_susp_struct {
    snd_susp_node susp;
    boolean started;
    int64_t terminate_cnt;
    boolean logically_stopped;
    sound_type s;
    int s_cnt;
    sample_block_values_type s_ptr;

    /* support for interpolation of s */
    sample_type s_x1_sample;
    double s_pHaSe;
    double s_pHaSe_iNcR;

    /* support for ramp between samples of s */
    /*can we delete these?
    double output_per_s;
    long s_n; */
} down_susp_node, *down_susp_type;


void down_i_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
    down_susp_type susp = (down_susp_type) a_susp;
    int cnt = 0; /* how many samples computed */
    sample_type s_x2_sample;
    int togo;
    int n;
    sample_block_type out;
    register sample_block_values_type out_ptr;

    register sample_block_values_type out_ptr_reg;

    register double s_pHaSe_iNcR_rEg = susp->s_pHaSe_iNcR;
    register double s_pHaSe_ReG;
    register sample_type s_x1_sample_reg;
    falloc_sample_block(out, "down_i_fetch");
    out_ptr = out->samples;
    snd_list->block = out;

    /* make sure sounds are primed with first values */
    if (!susp->started) {
        susp->started = true;
        susp_check_term_log_samples(s, s_ptr, s_cnt);
        susp->s_x1_sample = susp_fetch_sample(s, s_ptr, s_cnt);
    }

    susp_check_term_log_samples(s, s_ptr, s_cnt);
    s_x2_sample = susp_current_sample(s, s_ptr);
    /* initially, s_x1_sample and s_x2_samples will be the first 2 samples 
     * and phase will be zero, so interpolation between these two will yield
     * s_x1_sample. */
    while (cnt < max_sample_block_len) { /* outer loop */
        /* first compute how many samples to generate in inner loop: */
        /* don't overflow the output sample block: */
        togo = max_sample_block_len - cnt;
        /* don't run past terminate time */
        if (susp->terminate_cnt != UNKNOWN &&
            susp->terminate_cnt <= susp->susp.current + cnt + togo) {
            togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt));
            if (togo <= 0) {
                togo = 0;
                break;
            }
        }

        /* don't run past logical stop time */
        if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
            int64_t to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
            /* break if to_stop == 0 (we're at the logical stop)
             * AND cnt > 0 (we're not at the beginning of the
             * output block).
             */
            if (to_stop < togo) {
                if (to_stop == 0) {
                    if (cnt) {
                        togo = 0;
                        break;
                    } else /* keep togo as is: since cnt == 0, we
                            * can set the logical stop flag on this
                            * output block
                            */
                        susp->logically_stopped = true;
                } else /* limit togo so we can start a new
                        * block at the LST
                        */
                    togo = (int) to_stop;
            }
        }

        n = togo;
        s_pHaSe_ReG = susp->s_pHaSe;
        s_x1_sample_reg = susp->s_x1_sample;
        out_ptr_reg = out_ptr;
        if (n) do {
            while (s_pHaSe_ReG >= 1.0) {
                if (s_pHaSe_ReG < 2) { /* quick, just take one sample */
                    s_x1_sample_reg = s_x2_sample;
                    /* pick up next sample as s_x2_sample: */
                    susp->s_ptr++;
                    susp_took(s_cnt, 1);
                    s_pHaSe_ReG -= 1.0;
                } else { /* jump over as much input as possible */
                    int take = (int) s_pHaSe_ReG; /* rounds down */
                    take--; /* leave s_pHaSe_ReG > 1 so we stay in loop */
                    /* next iteration will set s_x1_sample_reg */
                    if (take > susp->s_cnt) take = susp->s_cnt;
                    susp->s_ptr += take;
                    susp_took(s_cnt, take);
                    s_pHaSe_ReG -= take;
                }
                /* derived from susp_check_term_log_samples_break, but with
                        a goto instead of a break */
                if (susp->s_cnt == 0) {
                    susp_get_samples(s, s_ptr, s_cnt);
                    terminate_test(s_ptr, s, susp->s_cnt);
                    /* see if newly discovered logical stop time: */
                    logical_stop_test(s, susp->s_cnt);
                    if ((susp->terminate_cnt != UNKNOWN &&
                         susp->terminate_cnt <
                           susp->susp.current + cnt + togo) ||
                        (!susp->logically_stopped && 
                         susp->susp.log_stop_cnt != UNKNOWN &&
                         susp->susp.log_stop_cnt < 
                           susp->susp.current + cnt + togo)) {
                        /* Because we are down sampling, we could have just
                           computed an output at sample N and be working on 
                           sample N+1, but then the next input sample is 
                           logically stopped. Bad because we cannot back up
                           and undo sample N to put it in the next block with
                           a logical stop flag set. Our only choice is to "fix"
                           the logical stop time to be on the next sample. */
                        if (susp->terminate_cnt != UNKNOWN &&
                            susp->terminate_cnt < susp->susp.current + togo - n) {
                            susp->terminate_cnt = susp->susp.current + togo - n;
                        }
                        if (susp->susp.log_stop_cnt != UNKNOWN &&
                            susp->susp.log_stop_cnt <
                            susp->susp.current + togo - n) {
                            susp->susp.log_stop_cnt = susp->susp.current + togo - n;
                        }
                        goto breakout;
                    }
                }
                s_x2_sample = susp_current_sample(s, s_ptr);
            }
            *out_ptr_reg++ = (sample_type) 
                (s_x1_sample_reg * (1 - s_pHaSe_ReG) + 
                 s_x2_sample * s_pHaSe_ReG);
            s_pHaSe_ReG += s_pHaSe_iNcR_rEg;
        } while (--n); /* inner loop */
      breakout:
        togo -= n;
        susp->s_pHaSe = s_pHaSe_ReG;
        susp->s_x1_sample = s_x1_sample_reg;
        out_ptr += togo;
        cnt += togo;
    } /* outer loop */

    /* test for termination */
    if (togo == 0 && cnt == 0) {
        snd_list_terminate(snd_list);
    } else {
        snd_list->block_len = cnt;
        susp->susp.current += cnt;
    }
    /* test for logical stop */
    if (susp->logically_stopped) {
        snd_list->logically_stopped = true;
    } else if (susp->susp.log_stop_cnt == susp->susp.current) {
        susp->logically_stopped = true;
    }
} /* down_i_fetch */


void down_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
    down_susp_type susp = (down_susp_type) a_susp;
    int64_t final_count = MIN(susp->susp.current + max_sample_block_len,
                              susp->susp.toss_cnt);
    time_type final_time = susp->susp.t0 + final_count / susp->susp.sr;
    long n;

    /* fetch samples from s up to final_time for this block of zeros */
    while (((long) ((final_time - susp->s->t0) * susp->s->sr + 0.5)) >=
           susp->s->current)
        susp_get_samples(s, s_ptr, s_cnt);
    /* convert to normal processing when we hit final_count */
    /* we want each signal positioned at final_time */
    if (final_count == susp->susp.toss_cnt) {
        n = (long) ROUNDBIG((final_time - susp->s->t0) * susp->s->sr -
                            (susp->s->current - susp->s_cnt));
        susp->s_ptr += n;
        susp_took(s_cnt, n);
        susp->susp.fetch = susp->susp.keep_fetch;
    }
    snd_list->block_len = (short) (final_count - susp->susp.current);
    susp->susp.current = final_count;
    snd_list->u.next = snd_list_create((snd_susp_type) susp);
    snd_list->block = internal_zero_block;
}


void down_mark(snd_susp_type a_susp)
{
    down_susp_type susp = (down_susp_type) a_susp;
    sound_xlmark(susp->s);
}


void down_free(snd_susp_type a_susp)
{
    down_susp_type susp = (down_susp_type) a_susp;
    sound_unref(susp->s);
    ffree_generic(susp, sizeof(down_susp_node), "down_free");
}


void down_print_tree(snd_susp_type a_susp, int n)
{
    down_susp_type susp = (down_susp_type) a_susp;
    indent(n);
    stdputstr("s:");
    sound_print_tree_1(susp->s, n);
}


sound_type snd_make_down(rate_type sr, sound_type s)
{
    register down_susp_type susp;
    /* sr specified as input parameter */
    time_type t0 = s->t0;
    sample_type scale_factor = 1.0F;
    time_type t0_min = t0;

    if (s->sr < sr) {
        sound_unref(s);
        xlfail("snd-down: output sample rate must be lower than input");
    }
    falloc_generic(susp, down_susp_node, "snd_make_down");

    susp->susp.fetch = down_i_fetch;

    susp->terminate_cnt = UNKNOWN;
    /* handle unequal start times, if any */
    if (t0 < s->t0) sound_prepend_zeros(s, t0);
    /* minimum start time over all inputs: */
    t0_min = min(s->t0, t0);
    /* how many samples to toss before t0: */
    susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
    if (susp->susp.toss_cnt > 0) {
        susp->susp.keep_fetch = susp->susp.fetch;
        susp->susp.fetch = down_toss_fetch;
    }

    /* initialize susp state */
    susp->susp.free = down_free;
    susp->susp.sr = sr;
    susp->susp.t0 = t0;
    susp->susp.mark = down_mark;
    susp->susp.print_tree = down_print_tree;
    susp->susp.name = "down";
    susp->logically_stopped = false;
    susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s);
    susp->started = false;
    susp->susp.current = 0;
    susp->s = s;
    susp->s_cnt = 0;
    susp->s_pHaSe = 0.0;
    susp->s_pHaSe_iNcR = s->sr / sr;
    //susp->s_n = 0;
    //susp->output_per_s = sr / s->sr;
    return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}


sound_type snd_down(rate_type sr, sound_type s)
{
    sound_type s_copy = sound_copy(s);
    return snd_make_down(sr, s_copy);
}