1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
/* downsample.c -- linear interpolation to a lower sample rate */
/* CHANGE LOG
* --------------------------------------------------------------------
* 28Apr03 dm changes for portability and fix compiler warnings
*/
#include "stdio.h"
#ifndef mips
#include "stdlib.h"
#endif
#include "xlisp.h"
#include "sound.h"
#include "falloc.h"
#include "cext.h"
#include "downsample.h"
void down_free(snd_susp_type a_susp);
typedef struct down_susp_struct {
snd_susp_node susp;
boolean started;
int64_t terminate_cnt;
boolean logically_stopped;
sound_type s;
int s_cnt;
sample_block_values_type s_ptr;
/* support for interpolation of s */
sample_type s_x1_sample;
double s_pHaSe;
double s_pHaSe_iNcR;
/* support for ramp between samples of s */
/*can we delete these?
double output_per_s;
long s_n; */
} down_susp_node, *down_susp_type;
void down_i_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
down_susp_type susp = (down_susp_type) a_susp;
int cnt = 0; /* how many samples computed */
sample_type s_x2_sample;
int togo;
int n;
sample_block_type out;
register sample_block_values_type out_ptr;
register sample_block_values_type out_ptr_reg;
register double s_pHaSe_iNcR_rEg = susp->s_pHaSe_iNcR;
register double s_pHaSe_ReG;
register sample_type s_x1_sample_reg;
falloc_sample_block(out, "down_i_fetch");
out_ptr = out->samples;
snd_list->block = out;
/* make sure sounds are primed with first values */
if (!susp->started) {
susp->started = true;
susp_check_term_log_samples(s, s_ptr, s_cnt);
susp->s_x1_sample = susp_fetch_sample(s, s_ptr, s_cnt);
}
susp_check_term_log_samples(s, s_ptr, s_cnt);
s_x2_sample = susp_current_sample(s, s_ptr);
/* initially, s_x1_sample and s_x2_samples will be the first 2 samples
* and phase will be zero, so interpolation between these two will yield
* s_x1_sample. */
while (cnt < max_sample_block_len) { /* outer loop */
/* first compute how many samples to generate in inner loop: */
/* don't overflow the output sample block: */
togo = max_sample_block_len - cnt;
/* don't run past terminate time */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <= susp->susp.current + cnt + togo) {
togo = (int) (susp->terminate_cnt - (susp->susp.current + cnt));
if (togo <= 0) {
togo = 0;
break;
}
}
/* don't run past logical stop time */
if (!susp->logically_stopped && susp->susp.log_stop_cnt != UNKNOWN) {
int64_t to_stop = susp->susp.log_stop_cnt - (susp->susp.current + cnt);
/* break if to_stop == 0 (we're at the logical stop)
* AND cnt > 0 (we're not at the beginning of the
* output block).
*/
if (to_stop < togo) {
if (to_stop == 0) {
if (cnt) {
togo = 0;
break;
} else /* keep togo as is: since cnt == 0, we
* can set the logical stop flag on this
* output block
*/
susp->logically_stopped = true;
} else /* limit togo so we can start a new
* block at the LST
*/
togo = (int) to_stop;
}
}
n = togo;
s_pHaSe_ReG = susp->s_pHaSe;
s_x1_sample_reg = susp->s_x1_sample;
out_ptr_reg = out_ptr;
if (n) do {
while (s_pHaSe_ReG >= 1.0) {
if (s_pHaSe_ReG < 2) { /* quick, just take one sample */
s_x1_sample_reg = s_x2_sample;
/* pick up next sample as s_x2_sample: */
susp->s_ptr++;
susp_took(s_cnt, 1);
s_pHaSe_ReG -= 1.0;
} else { /* jump over as much input as possible */
int take = (int) s_pHaSe_ReG; /* rounds down */
take--; /* leave s_pHaSe_ReG > 1 so we stay in loop */
/* next iteration will set s_x1_sample_reg */
if (take > susp->s_cnt) take = susp->s_cnt;
susp->s_ptr += take;
susp_took(s_cnt, take);
s_pHaSe_ReG -= take;
}
/* derived from susp_check_term_log_samples_break, but with
a goto instead of a break */
if (susp->s_cnt == 0) {
susp_get_samples(s, s_ptr, s_cnt);
terminate_test(s_ptr, s, susp->s_cnt);
/* see if newly discovered logical stop time: */
logical_stop_test(s, susp->s_cnt);
if ((susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt <
susp->susp.current + cnt + togo) ||
(!susp->logically_stopped &&
susp->susp.log_stop_cnt != UNKNOWN &&
susp->susp.log_stop_cnt <
susp->susp.current + cnt + togo)) {
/* Because we are down sampling, we could have just
computed an output at sample N and be working on
sample N+1, but then the next input sample is
logically stopped. Bad because we cannot back up
and undo sample N to put it in the next block with
a logical stop flag set. Our only choice is to "fix"
the logical stop time to be on the next sample. */
if (susp->terminate_cnt != UNKNOWN &&
susp->terminate_cnt < susp->susp.current + togo - n) {
susp->terminate_cnt = susp->susp.current + togo - n;
}
if (susp->susp.log_stop_cnt != UNKNOWN &&
susp->susp.log_stop_cnt <
susp->susp.current + togo - n) {
susp->susp.log_stop_cnt = susp->susp.current + togo - n;
}
goto breakout;
}
}
s_x2_sample = susp_current_sample(s, s_ptr);
}
*out_ptr_reg++ = (sample_type)
(s_x1_sample_reg * (1 - s_pHaSe_ReG) +
s_x2_sample * s_pHaSe_ReG);
s_pHaSe_ReG += s_pHaSe_iNcR_rEg;
} while (--n); /* inner loop */
breakout:
togo -= n;
susp->s_pHaSe = s_pHaSe_ReG;
susp->s_x1_sample = s_x1_sample_reg;
out_ptr += togo;
cnt += togo;
} /* outer loop */
/* test for termination */
if (togo == 0 && cnt == 0) {
snd_list_terminate(snd_list);
} else {
snd_list->block_len = cnt;
susp->susp.current += cnt;
}
/* test for logical stop */
if (susp->logically_stopped) {
snd_list->logically_stopped = true;
} else if (susp->susp.log_stop_cnt == susp->susp.current) {
susp->logically_stopped = true;
}
} /* down_i_fetch */
void down_toss_fetch(snd_susp_type a_susp, snd_list_type snd_list)
{
down_susp_type susp = (down_susp_type) a_susp;
int64_t final_count = MIN(susp->susp.current + max_sample_block_len,
susp->susp.toss_cnt);
time_type final_time = susp->susp.t0 + final_count / susp->susp.sr;
long n;
/* fetch samples from s up to final_time for this block of zeros */
while (((long) ((final_time - susp->s->t0) * susp->s->sr + 0.5)) >=
susp->s->current)
susp_get_samples(s, s_ptr, s_cnt);
/* convert to normal processing when we hit final_count */
/* we want each signal positioned at final_time */
if (final_count == susp->susp.toss_cnt) {
n = (long) ROUNDBIG((final_time - susp->s->t0) * susp->s->sr -
(susp->s->current - susp->s_cnt));
susp->s_ptr += n;
susp_took(s_cnt, n);
susp->susp.fetch = susp->susp.keep_fetch;
}
snd_list->block_len = (short) (final_count - susp->susp.current);
susp->susp.current = final_count;
snd_list->u.next = snd_list_create((snd_susp_type) susp);
snd_list->block = internal_zero_block;
}
void down_mark(snd_susp_type a_susp)
{
down_susp_type susp = (down_susp_type) a_susp;
sound_xlmark(susp->s);
}
void down_free(snd_susp_type a_susp)
{
down_susp_type susp = (down_susp_type) a_susp;
sound_unref(susp->s);
ffree_generic(susp, sizeof(down_susp_node), "down_free");
}
void down_print_tree(snd_susp_type a_susp, int n)
{
down_susp_type susp = (down_susp_type) a_susp;
indent(n);
stdputstr("s:");
sound_print_tree_1(susp->s, n);
}
sound_type snd_make_down(rate_type sr, sound_type s)
{
register down_susp_type susp;
/* sr specified as input parameter */
time_type t0 = s->t0;
sample_type scale_factor = 1.0F;
time_type t0_min = t0;
if (s->sr < sr) {
sound_unref(s);
xlfail("snd-down: output sample rate must be lower than input");
}
falloc_generic(susp, down_susp_node, "snd_make_down");
susp->susp.fetch = down_i_fetch;
susp->terminate_cnt = UNKNOWN;
/* handle unequal start times, if any */
if (t0 < s->t0) sound_prepend_zeros(s, t0);
/* minimum start time over all inputs: */
t0_min = min(s->t0, t0);
/* how many samples to toss before t0: */
susp->susp.toss_cnt = (long) ((t0 - t0_min) * sr + 0.5);
if (susp->susp.toss_cnt > 0) {
susp->susp.keep_fetch = susp->susp.fetch;
susp->susp.fetch = down_toss_fetch;
}
/* initialize susp state */
susp->susp.free = down_free;
susp->susp.sr = sr;
susp->susp.t0 = t0;
susp->susp.mark = down_mark;
susp->susp.print_tree = down_print_tree;
susp->susp.name = "down";
susp->logically_stopped = false;
susp->susp.log_stop_cnt = logical_stop_cnt_cvt(s);
susp->started = false;
susp->susp.current = 0;
susp->s = s;
susp->s_cnt = 0;
susp->s_pHaSe = 0.0;
susp->s_pHaSe_iNcR = s->sr / sr;
//susp->s_n = 0;
//susp->output_per_s = sr / s->sr;
return sound_create((snd_susp_type)susp, t0, sr, scale_factor);
}
sound_type snd_down(rate_type sr, sound_type s)
{
sound_type s_copy = sound_copy(s);
return snd_make_down(sr, s_copy);
}
|