File: EffectStage.cpp

package info (click to toggle)
audacity 3.2.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 106,704 kB
  • sloc: cpp: 277,038; ansic: 73,623; lisp: 7,761; python: 3,305; sh: 2,715; perl: 821; xml: 275; makefile: 119
file content (404 lines) | stat: -rw-r--r-- 14,752 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
/**********************************************************************

  Audacity: A Digital Audio Editor

  @file EffectStage.cpp

  Dominic Mazzoni
  Vaughan Johnson
  Martyn Shaw

  Paul Licameli split from PerTrackEffect.cpp

**********************************************************************/


#include "EffectStage.h"
#include "AudacityException.h"
#include "AudioGraphBuffers.h"
#include "Track.h"
#include <cassert>

namespace {
std::vector<std::shared_ptr<EffectInstanceEx>> MakeInstances(
   const AudioGraph::EffectStage::Factory &factory,
   EffectSettings &settings, double sampleRate, const Track &track
   , std::optional<sampleCount> genLength, bool multi)
{
   std::vector<std::shared_ptr<EffectInstanceEx>> instances;
   // Make as many instances as needed for the channels of the track, which
   // depends on how the instances report how many channels they accept
   const auto range = multi
      ? TrackList::Channels(&track)
      : TrackList::Channels(&track).StartingWith(&track).EndingAfter(&track);
   const auto nChannels = range.size();
   size_t ii = 0;
   for (auto iter = range.begin(); iter != range.end();) {
      auto channel = *iter;
      auto pInstance = factory();
      if (!pInstance)
         // A constructor that can't satisfy its post should throw instead
         throw std::exception{};
      auto count = pInstance->GetAudioInCount();
      ChannelName map[3]{ ChannelNameEOL, ChannelNameEOL, ChannelNameEOL };
      AudioGraph::MakeChannelMap(*channel, count > 1, map);
      // Give the plugin a chance to initialize
      if (!pInstance->ProcessInitialize(settings, sampleRate, map))
         throw std::exception{};
      instances.resize(ii);
   
      // Beware generators with zero in count
      if (genLength)
         count = nChannels;
   
      instances.push_back(move(pInstance));

      // Advance ii and iter
      if (count == 0)
         // What? Can't make progress
         throw std::exception();
      ii += count;
      if (ii >= nChannels)
         break;
      std::advance(iter, count);
   }
   return instances;
}
}

AudioGraph::EffectStage::EffectStage(CreateToken, bool multi,
   Source &upstream, Buffers &inBuffers,
   const Factory &factory, EffectSettings &settings,
   double sampleRate, std::optional<sampleCount> genLength, const Track &track
)  : mUpstream{ upstream }, mInBuffers{ inBuffers }
   , mInstances{ MakeInstances(factory, settings, sampleRate, track,
      genLength, multi) }
   , mSettings{ settings }, mSampleRate{ sampleRate }
   , mIsProcessor{ !genLength.has_value() }
   , mDelayRemaining{ genLength ? *genLength : sampleCount::max() }
{
   assert(upstream.AcceptsBlockSize(inBuffers.BlockSize()));
   assert(this->AcceptsBlockSize(inBuffers.BlockSize()));

   // Establish invariant
   mInBuffers.Rewind();
}

auto AudioGraph::EffectStage::Create(bool multi,
   Source &upstream, Buffers &inBuffers,
   const Factory &factory, EffectSettings &settings,
   double sampleRate, std::optional<sampleCount> genLength, const Track &track
) -> std::unique_ptr<EffectStage>
{
   try {
      return std::make_unique<EffectStage>(CreateToken{}, multi,
         upstream, inBuffers, factory, settings, sampleRate, genLength, track);
   }
   catch (const std::exception &) {
      return nullptr;
   }
}

AudioGraph::EffectStage::~EffectStage()
{
   // Allow the instances to cleanup
   for (auto &pInstance : mInstances)
      if (pInstance)
         pInstance->ProcessFinalize();
}

bool AudioGraph::EffectStage::AcceptsBuffers(const Buffers &buffers) const
{
   return true;
}

bool AudioGraph::EffectStage::AcceptsBlockSize(size_t size) const
{
   // Test the equality of input and output block sizes
   return mInBuffers.BlockSize() == size;
}

std::optional<size_t>
AudioGraph::EffectStage::Acquire(Buffers &data, size_t bound)
{
   assert(AcceptsBuffers(data));
   assert(AcceptsBlockSize(data.BlockSize()));
   // pre, needed for Process() and Discard()
   assert(bound <= std::min(data.BlockSize(), data.Remaining()));

   // For each input block of samples, we pass it to the effect along with a
   // variable output location.  This output location is simply a pointer into a
   // much larger buffer.  This reduces the number of calls required to add the
   // samples to the output track.
   //
   // Upon return from the effect, the output samples are "moved to the left" by
   // the number of samples in the current latency setting, effectively removing any
   // delay introduced by the effect.
   //
   // At the same time the total number of delayed samples are gathered and when
   // there is no further input data to process, the loop continues to call the
   // effect with an empty input buffer until the effect has had a chance to
   // return all of the remaining delayed samples.

   // Invariant satisfies pre for mUpstream.Acquire() and for Process()
   assert(mInBuffers.BlockSize() <= mInBuffers.Remaining());

   size_t curBlockSize = 0;

   if (auto oCurBlockSize = FetchProcessAndAdvance(data, bound, false)
      ; !oCurBlockSize
   )
      return {};
   else {
      curBlockSize = *oCurBlockSize;
      if (mIsProcessor && !mLatencyDone) {
         // Come here only in the first call to Acquire()
         // Some effects (like ladspa/lv2 swh plug-ins) don't report latency
         // until at least one block of samples is processed.  Find latency
         // once only for the track and assume it doesn't vary
         auto delay = mDelayRemaining =
            mInstances[0]->GetLatency(mSettings, mSampleRate);
         for (size_t ii = 1, nn = mInstances.size(); ii < nn; ++ii)
            if (mInstances[ii] &&
               mInstances[ii]->GetLatency(mSettings, mSampleRate) != delay)
               // This mismatch is unexpected.  Fail
               return {};
         // Discard all the latency
         while (delay > 0 && curBlockSize > 0) {
            auto discard = limitSampleBufferSize(curBlockSize, delay);
            data.Discard(discard, curBlockSize - discard);
            delay -= discard;
            curBlockSize -= discard;
            if (curBlockSize == 0) {
               if (!(oCurBlockSize = FetchProcessAndAdvance(data, bound, false)
               ))
                  return {};
               else
                  curBlockSize = *oCurBlockSize;
            }
            mLastProduced -= discard;
         }
         if (curBlockSize > 0) {
            assert(delay == 0);
            if (curBlockSize < bound) {
               // Discarded all the latency, while upstream may still be
               // producing.  Try to fill the buffer up to the bound.
               if (!(oCurBlockSize = FetchProcessAndAdvance(
                  data, bound - curBlockSize, false, curBlockSize)
               ))
                  return {};
               else
                  curBlockSize += *oCurBlockSize;
            }
         }
         else while (delay > 0) {
            assert(curBlockSize == 0);
            // Finish one-time delay in case it exceeds entire upstream length
            // Upstream must have been exhausted
            assert(mUpstream.Remaining() == 0);
            // Feed zeroes to the effect
            auto zeroes = limitSampleBufferSize(data.BlockSize(), delay);
            if (!(FetchProcessAndAdvance(data, zeroes, true)))
               return {};
            delay -= zeroes;
            // Debit mDelayRemaining later in Release()
         }
         mLatencyDone = true;
      }
   }

   if (mIsProcessor && curBlockSize < bound) {
      // If there is still a short buffer by this point, upstream must have
      // been exhausted
      assert(mUpstream.Remaining() == 0);

      // Continue feeding zeroes; this code block will produce as many zeroes
      // at the end as were discarded at the beginning (over one or more visits)
      auto zeroes =
         limitSampleBufferSize(bound - curBlockSize, mDelayRemaining);
      if (!FetchProcessAndAdvance(data, zeroes, true, curBlockSize))
         return {};
      // Debit mDelayRemaining later in Release()
   }

   auto result = mLastProduced + mLastZeroes;
   // assert the post
   assert(data.Remaining() > 0);
   assert(result <= bound);
   assert(result <= data.Remaining());
   assert(result <= Remaining());
   assert(bound == 0 || Remaining() == 0 || result > 0);
   return { result };
}

std::optional<size_t> AudioGraph::EffectStage::FetchProcessAndAdvance(
   Buffers &data, size_t bound, bool doZeroes, size_t outBufferOffset)
{
   std::optional<size_t> oCurBlockSize;
   // Generator always supplies zeroes in
   doZeroes = doZeroes || !mIsProcessor;
   if (!doZeroes)
      oCurBlockSize = mUpstream.Acquire(mInBuffers, bound);
   else {
      if (!mCleared) {
         // Need to do this the first time, only, that we begin to give zeroes
         // to the processor
         mInBuffers.Rewind();
         const auto blockSize = mInBuffers.BlockSize();
         for (size_t ii = 0; ii < mInBuffers.Channels(); ++ii) {
            auto p = &mInBuffers.GetWritePosition(ii);
            std::fill(p, p + blockSize, 0);
         }
         mCleared = true;
      }
      oCurBlockSize = {
         mIsProcessor ? bound : limitSampleBufferSize(bound, mDelayRemaining) };
      if (!mIsProcessor)
         // Do this (ignoring result) so we can correctly Release() upstream
         mUpstream.Acquire(mInBuffers, bound);
   }
   if (!oCurBlockSize)
      return {};

   const auto curBlockSize = *oCurBlockSize;
   if (curBlockSize == 0)
      assert(doZeroes || mUpstream.Remaining() == 0); // post of Acquire()
   else {
      // Called only in Acquire()
      // invariant or post of mUpstream.Acquire() satisfies pre of Process()
      // because curBlockSize <= bound <= mInBuffers.blockSize()
      //    == data.BlockSize()
      // and mInBuffers.BlockSize() <= mInBuffers.Remaining() by invariant
      // and data.BlockSize() <= data.Remaining() by pre of Acquire()
      for (size_t ii = 0, nn = mInstances.size(); ii < nn; ++ii) {
         auto &pInstance = mInstances[ii];
         if (!pInstance)
            continue;
         if (!Process(*pInstance, ii, data, curBlockSize, outBufferOffset))
            return {};
      }

      if (doZeroes) {
         // Either a generator or doing the tail; will count down delay
         mLastZeroes = limitSampleBufferSize(curBlockSize, DelayRemaining());
         if (!mIsProcessor) {
            // This allows polling the progress meter for a generator
            if (!mUpstream.Release())
               return {};
         }
      }
      else {
         // Will count down the upstream
         mLastProduced += curBlockSize;
         if (!mUpstream.Release())
            return {};
         mInBuffers.Advance(curBlockSize);
         if (mInBuffers.Remaining() < mInBuffers.BlockSize())
            // Maintain invariant minimum availability
            mInBuffers.Rotate();
      }
   }
   return oCurBlockSize;
}

bool AudioGraph::EffectStage::Process(EffectInstanceEx &instance,
   size_t channel, const Buffers &data, size_t curBlockSize,
   size_t outBufferOffset) const
{
   size_t processed{};
   try {
      const auto positions = mInBuffers.Positions();
      const auto nPositions = mInBuffers.Channels();
      // channel may be nonzero in the case of a plug-in that only reads
      // one channel at a time, so multiple instances are made to mix stereo
      assert(channel <= nPositions);
      std::vector<float *> inPositions(
         positions + channel, positions + nPositions - channel);
      // When the plug-in expects many input channels, replicate the last
      // buffer (assumed to be zero-filled) as dummy input
      inPositions.resize(
         instance.GetAudioInCount() - channel, inPositions.back());

      std::vector<float *> advancedOutPositions;
      const auto size = instance.GetAudioOutCount() - channel;
      advancedOutPositions.reserve(size);

      auto outPositions = data.Positions();
      // It is assumed that data has at least one dummy buffer last
      auto channels = data.Channels();
      // channel may be nonzero in the case of a plug-in that only writes
      // one channel at a time, so multiple instances are made to mix stereo
      for (size_t ii = channel; ii < channels; ++ii)
         advancedOutPositions.push_back(outPositions[ii] + outBufferOffset);
      // When the plug-in expects many output channels, replicate the last
      // as dummy output
      advancedOutPositions.resize(size, advancedOutPositions.back());

      processed = instance.ProcessBlock(mSettings,
         inPositions.data(), advancedOutPositions.data(), curBlockSize);
   }
   catch (const AudacityException &) {
      // PRL: Bug 437:
      // Pass this along to our application-level handler
      throw;
   }
   catch (...) {
      // PRL:
      // Exceptions for other reasons, maybe in third-party code...
      // Continue treating them as we used to, but I wonder if these
      // should now be treated the same way.
      return false;
   }

   return (processed == curBlockSize);
}

sampleCount AudioGraph::EffectStage::Remaining() const
{
   // Not correct until at least one call to Acquire() so that mDelayRemaining
   // is assigned.
   // mLastProduced will have the up-front latency discarding deducted.
   // mDelayRemaining later decreases to 0 as zeroes are supplied to the
   // processor at the end, compensating for the discarding.
   return mLastProduced
      + (mIsProcessor ? mUpstream.Remaining() : 0)
      + DelayRemaining();
}

bool AudioGraph::EffectStage::Release()
{
   // Progress toward termination (Remaining() == 0),
   // if mLastProduced + mLastZeroes > 0,
   // which is what Acquire() last returned
   mDelayRemaining -= mLastZeroes;
   assert(mDelayRemaining >= 0);
   mLastProduced = mLastZeroes = 0;
   return true;
}

unsigned AudioGraph::MakeChannelMap(
   const Track &track, bool multichannel, ChannelName map[3])
{
   // Iterate either over one track which could be any channel,
   // or if multichannel, then over all channels of track,
   // which is a leader.
   unsigned numChannels = 0;
   for (auto channel : TrackList::Channels(&track).StartingWith(&track)) {
      if (channel->GetChannel() == Track::LeftChannel)
         map[numChannels] = ChannelNameFrontLeft;
      else if (channel->GetChannel() == Track::RightChannel)
         map[numChannels] = ChannelNameFrontRight;
      else
         map[numChannels] = ChannelNameMono;
      ++ numChannels;
      map[numChannels] = ChannelNameEOL;
      if (! multichannel)
         break;
      if (numChannels == 2) {
         // TODO: more-than-two-channels
         // Ignore other channels
         break;
      }
   }
   return numChannels;
}