1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
/**********************************************************************
Audacity: A Digital Audio Editor
@file MixerSource.cpp
Dominic Mazzoni
Markus Meyer
Vaughan Johnson
Paul Licameli split from Mix.cpp
**********************************************************************/
#include "MixerSource.h"
#include "AudioGraphBuffers.h"
#include "Envelope.h"
#include "SampleTrack.h"
#include "SampleTrackCache.h"
#include "Resample.h"
#include "float_cast.h"
namespace {
template<typename T, typename F> std::vector<T>
initVector(size_t dim1, const F &f)
{
std::vector<T> result( dim1 );
for (auto &row : result)
f(row);
return result;
}
template<typename T> std::vector<std::vector<T>>
initVector(size_t dim1, size_t dim2)
{
return initVector<std::vector<T>>(dim1,
[dim2](auto &row){ row.resize(dim2); });
}
}
void MixerSource::MakeResamplers()
{
for (size_t j = 0; j < mnChannels; ++j)
mResample[j] = std::make_unique<Resample>(
mResampleParameters.mHighQuality,
mResampleParameters.mMinFactor[j], mResampleParameters.mMaxFactor[j]);
}
namespace {
//Note: The meaning of this function has changed (December 2012)
//Previously this function did something that was close to the opposite (but not entirely accurate).
/** @brief Compute the integral warp factor between two non-warped time points
*
* Calculate the relative length increase of the chosen segment from the original sound.
* So if this time track has a low value (i.e. makes the sound slower), the NEW warped
* sound will be *longer* than the original sound, so the return value of this function
* is larger.
* @param t0 The starting time to calculate from
* @param t1 The ending time to calculate to
* @return The relative length increase of the chosen segment from the original sound.
*/
double ComputeWarpFactor(const Envelope &env, double t0, double t1)
{
return env.AverageOfInverse(t0, t1);
}
}
size_t MixerSource::MixVariableRates(
unsigned iChannel, const size_t maxOut, float &floatBuffer)
{
auto &cache = mInputTrack[iChannel];
const auto pos = &mSamplePos[iChannel];
const auto queue = mSampleQueue[iChannel].data();
const auto queueStart = &mQueueStart[iChannel];
const auto queueLen = &mQueueLen[iChannel];
const auto pResample = mResample[iChannel].get();
const auto pFloat = &floatBuffer;
const auto track = cache.GetTrack().get();
const double trackRate = track->GetRate();
const auto &[mT0, mT1, mSpeed, _] = *mTimesAndSpeed;
const double initialWarp = mRate / mSpeed / trackRate;
const double tstep = 1.0 / trackRate;
auto sampleSize = SAMPLE_SIZE(floatSample);
size_t out = 0;
/* time is floating point. Sample rate is integer. The number of samples
* has to be integer, but the multiplication gives a float result, which we
* round to get an integer result. TODO: is this always right or can it be
* off by one sometimes? Can we not get this information directly from the
* clip (which must know) rather than convert the time?
*
* LLL: Not at this time. While WaveClips provide methods to retrieve the
* start and end sample, they do the same float->sampleCount conversion
* to calculate the position.
*/
// Find the last sample
double endTime = track->GetEndTime();
double startTime = track->GetStartTime();
const bool backwards = (mT1 < mT0);
const double tEnd = backwards
? std::max(startTime, mT1)
: std::min(endTime, mT1);
const auto endPos = track->TimeToLongSamples(tEnd);
// Find the time corresponding to the start of the queue, for use with time track
double t = ((*pos).as_long_long() +
(backwards ? *queueLen : - *queueLen)) / trackRate;
while (out < maxOut) {
if (*queueLen < (int)sProcessLen) {
// Shift pending portion to start of the buffer
memmove(queue, &queue[*queueStart], (*queueLen) * sampleSize);
*queueStart = 0;
auto getLen = limitSampleBufferSize(
sQueueMaxLen - *queueLen,
backwards ? *pos - endPos : endPos - *pos
);
// Nothing to do if past end of play interval
if (getLen > 0) {
if (backwards) {
auto results =
cache.GetFloats(*pos - (getLen - 1), getLen, mMayThrow);
if (results)
memcpy(&queue[*queueLen], results, sizeof(float) * getLen);
else
memset(&queue[*queueLen], 0, sizeof(float) * getLen);
track->GetEnvelopeValues(mEnvValues.data(),
getLen, (*pos - (getLen - 1)).as_double() / trackRate);
*pos -= getLen;
}
else {
auto results = cache.GetFloats(*pos, getLen, mMayThrow);
if (results)
memcpy(&queue[*queueLen], results, sizeof(float) * getLen);
else
memset(&queue[*queueLen], 0, sizeof(float) * getLen);
track->GetEnvelopeValues(mEnvValues.data(),
getLen, (*pos).as_double() / trackRate);
*pos += getLen;
}
for (decltype(getLen) i = 0; i < getLen; i++) {
queue[(*queueLen) + i] *= mEnvValues[i];
}
if (backwards)
ReverseSamples((samplePtr)&queue[0], floatSample,
*queueLen, getLen);
*queueLen += getLen;
}
}
auto thisProcessLen = sProcessLen;
bool last = (*queueLen < (int)sProcessLen);
if (last) {
thisProcessLen = *queueLen;
}
double factor = initialWarp;
if (mEnvelope)
{
//TODO-MB: The end time is wrong when the resampler doesn't use all input samples,
// as a result of this the warp factor may be slightly wrong, so AudioIO will stop too soon
// or too late (resulting in missing sound or inserted silence). This can't be fixed
// without changing the way the resampler works, because the number of input samples that will be used
// is unpredictable. Maybe it can be compensated later though.
if (backwards)
factor *= ComputeWarpFactor( *mEnvelope,
t - (double)thisProcessLen / trackRate + tstep, t + tstep);
else
factor *= ComputeWarpFactor( *mEnvelope,
t, t + (double)thisProcessLen / trackRate);
}
auto results = pResample->Process(factor,
&queue[*queueStart],
thisProcessLen,
last,
// PRL: Bug2536: crash in soxr happened on Mac, sometimes, when
// maxOut - out == 1 and &pFloat[out + 1] was an unmapped
// address, because soxr, strangely, fetched an 8-byte (misaligned!)
// value from &pFloat[out], but did nothing with it anyway,
// in soxr_output_no_callback.
// Now we make the bug go away by allocating a little more space in
// the buffer than we need.
&pFloat[out],
maxOut - out);
const auto input_used = results.first;
*queueStart += input_used;
*queueLen -= input_used;
out += results.second;
t += (input_used / trackRate) * (backwards ? -1 : 1);
if (last) {
break;
}
}
assert(out <= maxOut);
return out;
}
size_t MixerSource::MixSameRate(unsigned iChannel, const size_t maxOut,
float &floatBuffer)
{
auto &cache = mInputTrack[iChannel];
const auto pos = &mSamplePos[iChannel];
const auto pFloat = &floatBuffer;
const auto track = cache.GetTrack().get();
const double t = ( *pos ).as_double() / track->GetRate();
const double trackEndTime = track->GetEndTime();
const double trackStartTime = track->GetStartTime();
const auto &[mT0, mT1, _, __] = *mTimesAndSpeed;
const bool backwards = (mT1 < mT0);
const double tEnd = backwards
? std::max(trackStartTime, mT1)
: std::min(trackEndTime, mT1);
//don't process if we're at the end of the selection or track.
if ((backwards ? t <= tEnd : t >= tEnd))
return 0;
//if we're about to approach the end of the track or selection, figure out how much we need to grab
const auto slen = limitSampleBufferSize(
maxOut,
// PRL: maybe t and tEnd should be given as sampleCount instead to
// avoid trouble subtracting one large value from another for a small
// difference
sampleCount{ (backwards ? t - tEnd : tEnd - t) * track->GetRate() + 0.5 }
);
if (backwards) {
auto results = cache.GetFloats(*pos - (slen - 1), slen, mMayThrow);
if (results)
memcpy(pFloat, results, sizeof(float) * slen);
else
memset(pFloat, 0, sizeof(float) * slen);
track->GetEnvelopeValues(mEnvValues.data(), slen, t - (slen - 1) / mRate);
for (size_t i = 0; i < slen; i++)
pFloat[i] *= mEnvValues[i]; // Track gain control will go here?
ReverseSamples((samplePtr)pFloat, floatSample, 0, slen);
*pos -= slen;
}
else {
auto results = cache.GetFloats(*pos, slen, mMayThrow);
if (results)
memcpy(pFloat, results, sizeof(float) * slen);
else
memset(pFloat, 0, sizeof(float) * slen);
track->GetEnvelopeValues(mEnvValues.data(), slen, t);
for (size_t i = 0; i < slen; i++)
pFloat[i] *= mEnvValues[i]; // Track gain control will go here?
*pos += slen;
}
assert(slen <= maxOut);
return slen;
}
void MixerSource::ZeroFill(
size_t produced, size_t max, float &floatBuffer)
{
assert(produced <= max);
const auto pFloat = &floatBuffer;
std::fill(pFloat + produced, pFloat + max, 0);
}
MixerSource::MixerSource(const SampleTrack &leader, size_t bufferSize,
double rate, const MixerOptions::Warp &options, bool highQuality,
bool mayThrow, std::shared_ptr<TimesAndSpeed> pTimesAndSpeed,
const ArrayOf<bool> *pMap
) : mpLeader{ leader.SharedPointer<const SampleTrack>() }
, mnChannels{ TrackList::Channels(&leader).size() }
, mRate{ rate }
, mEnvelope{ options.envelope }
, mMayThrow{ mayThrow }
, mTimesAndSpeed{ move(pTimesAndSpeed) }
, mInputTrack( mnChannels )
, mSamplePos( mnChannels )
, mSampleQueue{ initVector<float>(mnChannels, sQueueMaxLen) }
, mQueueStart( mnChannels, 0 )
, mQueueLen( mnChannels, 0 )
, mResampleParameters{ highQuality, leader, rate, options }
, mResample( mnChannels )
, mEnvValues( std::max(sQueueMaxLen, bufferSize) )
, mpMap{ pMap }
{
size_t j = 0;
for (auto channel : TrackList::Channels(&leader))
mInputTrack[j++].SetTrack(channel->SharedPointer<const SampleTrack>());
assert(mTimesAndSpeed);
auto t0 = mTimesAndSpeed->mT0;
for (j = 0; j < mnChannels; ++j) {
mSamplePos[j] = GetChannel(j)->TimeToLongSamples(t0);
}
MakeResamplers();
}
MixerSource::~MixerSource() = default;
const SampleTrack *MixerSource::GetChannel(unsigned iChannel) const
{
auto range = TrackList::Channels(mpLeader.get());
auto iter = range.begin();
std::advance(iter, iChannel);
return *iter;
}
const bool *MixerSource::MixerSpec(unsigned iChannel) const
{
return mpMap ? mpMap[iChannel].get() : nullptr;
}
bool MixerSource::AcceptsBuffers(const Buffers &buffers) const
{
return AcceptsBlockSize(buffers.BufferSize());
}
bool MixerSource::AcceptsBlockSize(size_t blockSize) const
{
return blockSize <= mEnvValues.size();
}
#define stackAllocate(T, count) static_cast<T*>(alloca(count * sizeof(T)))
std::optional<size_t> MixerSource::Acquire(Buffers &data, size_t bound)
{
assert(AcceptsBuffers(data));
assert(AcceptsBlockSize(data.BlockSize()));
assert(bound <= data.BlockSize());
assert(data.BlockSize() <= data.Remaining());
auto &[mT0, mT1, _, mTime] = *mTimesAndSpeed;
const bool backwards = (mT1 < mT0);
// TODO: more-than-two-channels
const auto maxChannels = mMaxChannels = data.Channels();
const auto limit = std::min<size_t>(mnChannels, maxChannels);
size_t maxTrack = 0;
const auto mixed = stackAllocate(size_t, maxChannels);
for (size_t j = 0; j < limit; ++j) {
const auto pFloat = &data.GetWritePosition(j);
auto &result = mixed[j];
const auto track = GetChannel(j);
result =
(mResampleParameters.mVariableRates || track->GetRate() != mRate)
? MixVariableRates(j, bound, *pFloat)
: MixSameRate(j, bound, *pFloat);
maxTrack = std::max(maxTrack, result);
auto newT = mSamplePos[j].as_double() / track->GetRate();
if (backwards)
mTime = std::min(mTime, newT);
else
mTime = std::max(mTime, newT);
}
// Another pass in case channels of a track did not produce equal numbers
for (size_t j = 0; j < limit; ++j) {
const auto pFloat = &data.GetWritePosition(j);
const auto result = mixed[j];
ZeroFill(result, maxTrack, *pFloat);
}
mLastProduced = maxTrack;
assert(maxTrack <= bound);
assert(maxTrack <= data.Remaining());
assert(maxTrack <= Remaining());
assert(data.Remaining() > 0);
assert(bound == 0 || Remaining() == 0 || maxTrack > 0);
return { mLastProduced };
}
// Does not return a strictly decreasing sequence of values such as to
// provide proof of termination. Just an indication of whether done or not.
sampleCount MixerSource::Remaining() const
{
// TODO: make a more exact calculation of total remaining; see Terminates()
return mLastProduced;
}
bool MixerSource::Release()
{
mLastProduced = 0;
return true;
}
bool MixerSource::Terminates() const
{
// Not always terminating
// TODO: return true sometimes, for mixers that never reposition
// because they are not used in playback. But then an exact calculation of
// Remaining() is needed to satisfy the contract, and that is complicated
// when there is resampling or a time warp.
return false;
}
void MixerSource::Reposition(double time, bool skipping)
{
for (size_t j = 0; j < mnChannels; ++j) {
mSamplePos[j] = GetChannel(j)->TimeToLongSamples(time);
mQueueStart[j] = 0;
mQueueLen[j] = 0;
}
// Bug 2025: libsoxr 0.1.3, first used in Audacity 2.3.0, crashes with
// constant rate resampling if you try to reuse the resampler after it has
// flushed. Should that be considered a bug in sox? This works around it.
// (See also bug 1887, and the same work around in Mixer::Restart().)
if (skipping)
MakeResamplers();
}
|