File: loudness_test.m

package info (click to toggle)
audacity 3.2.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 106,704 kB
  • sloc: cpp: 277,038; ansic: 73,623; lisp: 7,761; python: 3,305; sh: 2,715; perl: 821; xml: 275; makefile: 119
file content (291 lines) | stat: -rw-r--r-- 10,410 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
## Audacity Loudness effect unit test
#
# Max Maisel
#
# This tests the Loudness effect with 30 seconds long pseudo-random stereo
# noise sequences. The test sequences have different amplitudes per
# channel and sometimes a DC component. For best test coverage, irrelevant
# parameters for the current operation are randomly varied.
#

printf("Running Loudness effect tests.\n");
printf("This requires the octave-forge-signal package to be installed.\n");

pkg load signal;

EXPORT_TEST_SIGNALS = true;
TEST_LUFS_HELPER = true;
# LUFS need a higher epsilon because they are a logarithmic unit.
LUFS_epsilon = 0.02;

# A straightforward and simple LUFS implementation which can
# be easily compared with the specification ITU-R BS.1770-4.
function [gated_lufs] = calc_LUFS(x, fs)
  # HSF
  f0 = 38.13547087602444;
  Q  =  0.5003270373238773;
  K  = tan(pi * f0 / fs);

  rb0 = 1.0;
  rb1 = -2.0;
  rb2 = 1.0;
  ra0 = 1.0;
  ra1 = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
  ra2 = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);

  rb = [rb0 rb1 rb2];
  ra = [ra0 ra1 ra2];

  # HPF
  db = 3.999843853973347;
  f0 = 1681.974450955533;
  Q  = 0.7071752369554196;
  K  = tan(pi * f0 / fs);
  Vh = power(10.0, db / 20.0);
  Vb = power(Vh, 0.4996667741545416);

  pa0 = 1.0;
  a0 =      1.0 + K / Q + K * K;
  pb0 =     (Vh + Vb * K / Q + K * K) / a0;
  pb1 =           2.0 * (K * K -  Vh) / a0;
  pb2 =     (Vh - Vb * K / Q + K * K) / a0;
  pa1 =           2.0 * (K * K - 1.0) / a0;
  pa2 =         (1.0 - K / Q + K * K) / a0;

  pb = [pb0 pb1 pb2];
  pa = [pa0 pa1 pa2];

  # Apply k-weighting
  x = filter(rb, ra, x, [], 1);
  x = filter(pb, pa, x, [], 1);

  # - gating blocks (every 100 ms over 400 ms)
  block_size    = 0.4*fs;
  block_overlap = 0.3*fs;
  block_count   = floor((size(x)(1)-block_size)/(block_size-block_overlap))+1+1;

  x_blocked        = zeros(block_size, block_count, size(x)(2));
  for i=1:1:size(x)(2)
    x_blocked(:,:,i) = buffer(x(:,i), block_size, 0.3*fs, 'nodelay');
  end

  lufs_blocked = 1/(block_size)*sum(x_blocked.^2, 1);
  lufs_blocked = sum(lufs_blocked, 3);

  # Apply absolute threshold
  GAMMA_A = -70;
  lufs_blocked = -0.691 + 10*log10(lufs_blocked);
  valid_blocks = length(lufs_blocked);
  valid_blocks = valid_blocks - length(lufs_blocked(lufs_blocked < GAMMA_A));
  lufs_blocked(lufs_blocked < GAMMA_A) = -100;
  lufs_blocked = 10.^((lufs_blocked+0.691)/10);

  # Apply relative threshold
  GAMMA_R = -0.691 + 10*log10(sum(lufs_blocked)/valid_blocks) - 10;
  lufs_blocked = -0.691 + 10*log10(lufs_blocked);
  valid_blocks = length(lufs_blocked);
  valid_blocks = valid_blocks - length(lufs_blocked(lufs_blocked < GAMMA_R));
  lufs_blocked(lufs_blocked < GAMMA_R) = -100;
  lufs_blocked = 10.^((lufs_blocked+0.691)/10);
  hold off

  gated_lufs = -0.691 + 10*log10(sum(lufs_blocked)/valid_blocks);
end

if TEST_LUFS_HELPER
  printf("Running calc_LUFS() selftest.\n");
  printf("Compare the following results with a trusted LUFS calculator.\n");

  fs = 44100;
  k  = 1:1:60*fs;
  x  = 0.3*sin(2*pi*1000/fs*k) + 0.2*sin(2*pi*1200/fs*k);
  x  = (x .* [1:1:30*fs, 30*fs:-1:1]./60./fs).';

  audiowrite(cstrcat(pwd(), "/LUFS-selftest1.wav"), x, fs);
  printf("LUFS-selftest1.wav should be %f LUFS\n", calc_LUFS(x, fs));

  randn("seed", 1);
  x = [0.2*randn(2, 10*fs) zeros(2, 10*fs) 0.1*randn(2, 10*fs)].';
  x(:,1) = x(:,1) * 0.4 + 0.2;

  audiowrite(cstrcat(pwd(), "/LUFS-selftest2.wav"), x, fs);
  printf("LUFS-selftest2.wav should be %f LUFS\n", calc_LUFS(x, fs));

  fs = 8000;
  randn("seed", 2);
  x = [0.2*randn(2, 10*fs) zeros(2, 10*fs) 0.1*randn(2, 10*fs)].';
  x(:,1) = x(:,1) * 0.6 - 0.1;

  # MMM: I'm not sure how trustworthy free loudness meters are
  #      in case of non-standard sample rates.
  audiowrite(cstrcat(pwd(), "/LUFS-selftest3.wav"), x, fs);
  printf("LUFS-selftest3.wav should be %f LUFS\n", calc_LUFS(x, fs));
end

## Test Loudness LUFS mode: block to short and all silent
CURRENT_TEST = "Loudness LUFS mode, short silent block";
fs= 44100;
x = zeros(ceil(fs*0.35), 2);
audiowrite(TMP_FILENAME, x, fs);
if EXPORT_TEST_SIGNALS
  audiowrite(cstrcat(pwd(), "/Loudness-LUFS-silence-test.wav"), x, fs);
end

remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-23 DualMono=1 NormalizeTo=0 StereoIndependent=0\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");

y = audioread(TMP_FILENAME);
do_test_equ(y, x, "identity");

## Test Loudness LUFS mode: stereo dependent
CURRENT_TEST = "Loudness LUFS mode, keep DC and stereo balance";
randn("seed", 1);
# Include some silence in the test signal to test loudness gating
# and vary the overall loudness over time.
x = [0.1*randn(15*fs, 2).', zeros(5*fs, 2).', 0.1*randn(15*fs, 2).'].';
x(:,1) = x(:,1) .* sin(2*pi/fs/35*(1:1:35*fs)).' .* 1.2;
x(:,2) = x(:,2) .* sin(2*pi/fs/35*(1:1:35*fs)).';
audiowrite(TMP_FILENAME, x, fs);
if EXPORT_TEST_SIGNALS
  audiowrite(cstrcat(pwd(), "/Loudness-LUFS-stereo-test.wav"), x, fs);
end

remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-23 DualMono=1 NormalizeTo=0 StereoIndependent=0\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");

y = audioread(TMP_FILENAME);
do_test_equ(calc_LUFS(y, fs), -23, "loudness", LUFS_epsilon);
do_test_neq(calc_LUFS(y(:,1), fs), calc_LUFS(y(:,2), fs), "stereo balance", 1);

## Test Loudness LUFS mode, stereo independent
CURRENT_TEST = "Loudness LUFS mode, stereo independence";
audiowrite(TMP_FILENAME, x, fs);
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-23 DualMono=0 NormalizeTo=0 StereoIndependent=1\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");

y = audioread(TMP_FILENAME);
# Independently processed stereo channels have half the target loudness.
do_test_equ(calc_LUFS(y(:,1), fs), -26, "channel 1 loudness", LUFS_epsilon);
do_test_equ(calc_LUFS(y(:,2), fs), -26, "channel 2 loudness", LUFS_epsilon);

## Test Loudness LUFS mode: mono as mono
CURRENT_TEST = "Test Loudness LUFS mode: mono as mono";
x = x(:,1);
audiowrite(TMP_FILENAME, x, fs);
if EXPORT_TEST_SIGNALS
  audiowrite(cstrcat(pwd(), "/Loudness-LUFS-mono-test.wav"), x, fs);
end

remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-26 DualMono=0 NormalizeTo=0 StereoIndependent=1\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=1\n"));
system("sync");

y = audioread(TMP_FILENAME);
do_test_equ(calc_LUFS(y, fs), -26, "loudness", LUFS_epsilon);

## Test Loudness LUFS mode: mono as dual-mono
CURRENT_TEST = "Test Loudness LUFS mode: mono as dual-mono";
audiowrite(TMP_FILENAME, x, fs);

remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-26 DualMono=1 NormalizeTo=0 StereoIndependent=0\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=1\n"));
system("sync");

y = audioread(TMP_FILENAME);
# This shall be 3 LU quieter as it is compared to strict spec.
do_test_equ(calc_LUFS(y, fs), -29, "loudness", LUFS_epsilon);

## Test Loudness LUFS mode: multi-rate project
CURRENT_TEST = "Test Loudness LUFS mode: multi-rate project";
audiowrite(TMP_FILENAME, x, fs);

remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));

randn("seed", 2);
fs1= 8000;
x1 = [0.2*randn(2, 10*fs1) zeros(2, 10*fs1) 0.1*randn(2, 10*fs1)].';
x1(:,1) = x1(:,1) * 0.6;
audiowrite(TMP_FILENAME, x1, fs1);
if EXPORT_TEST_SIGNALS
  audiowrite(cstrcat(pwd(), "/Loudness-LUFS-stereo-test-8kHz.wav"), x1, fs1);
end

aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-30 DualMono=0 NormalizeTo=0 StereoIndependent=0\n");

select_tracks(0, 1);
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=1\n"));
system("sync");
y = audioread(TMP_FILENAME);

select_tracks(1, 1);
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");
y1 = audioread(TMP_FILENAME);

do_test_equ(calc_LUFS(y, fs),   -30, "loudness track 1", LUFS_epsilon);
# XXX: Audacity does not export at 8kHz through scripting thus this test is expected to fail!
#      To ensure that this works you have to set the project rate to 8 kHz,
#      export the track and check the results manually.
do_test_equ(calc_LUFS(y1, fs1), -30, "loudness track 2", LUFS_epsilon, true);
# No stereo balance check for track 1 - it's a mono track.
do_test_neq(calc_LUFS(y1(:,1), fs), calc_LUFS(y1(:,2), fs), "stereo balance track 2", LUFS_epsilon);

## Test Loudness RMS mode: stereo independent
CURRENT_TEST = "Loudness RMS mode, stereo independent";
randn("seed", 1);
fs= 44100;
x = 0.1*randn(30*fs, 2);
x(:,1) = x(:,1) * 0.6;
audiowrite(TMP_FILENAME, x, fs);
if EXPORT_TEST_SIGNALS
  audiowrite(cstrcat(pwd(), "/Loudness-RMS-test.wav"), x, fs);
end

remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: RMSLevel=-20 DualMono=0 NormalizeTo=1 StereoIndependent=1\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");

y = audioread(TMP_FILENAME);
do_test_equ(20*log10(sqrt(sum(y(:,1).*y(:,1)/length(y)))), -20, "channel 1 RMS");
do_test_equ(20*log10(sqrt(sum(y(:,2).*y(:,2)/length(y)))), -20, "channel 2 RMS");

## Test Loudness RMS mode: stereo dependent
CURRENT_TEST = "Loudness RMS mode, stereo dependent";
audiowrite(TMP_FILENAME, x, fs);

remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: RMSLevel=-22 DualMono=1 NormalizeTo=1 StereoIndependent=0\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");

y = audioread(TMP_FILENAME);
# Stereo RMS must be calculated in quadratic domain.
do_test_equ(20*log10(sqrt(sum(rms(y).^2)/size(y)(2))), -22, "RMS");
do_test_neq(20*log10(rms(y(:,1))), 20*log10(rms(y(:,2))), "stereo balance", 1);