1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
## Audacity Loudness effect unit test
#
# Max Maisel
#
# This tests the Loudness effect with 30 seconds long pseudo-random stereo
# noise sequences. The test sequences have different amplitudes per
# channel and sometimes a DC component. For best test coverage, irrelevant
# parameters for the current operation are randomly varied.
#
printf("Running Loudness effect tests.\n");
printf("This requires the octave-forge-signal package to be installed.\n");
pkg load signal;
EXPORT_TEST_SIGNALS = true;
TEST_LUFS_HELPER = true;
# LUFS need a higher epsilon because they are a logarithmic unit.
LUFS_epsilon = 0.02;
# A straightforward and simple LUFS implementation which can
# be easily compared with the specification ITU-R BS.1770-4.
function [gated_lufs] = calc_LUFS(x, fs)
# HSF
f0 = 38.13547087602444;
Q = 0.5003270373238773;
K = tan(pi * f0 / fs);
rb0 = 1.0;
rb1 = -2.0;
rb2 = 1.0;
ra0 = 1.0;
ra1 = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
ra2 = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);
rb = [rb0 rb1 rb2];
ra = [ra0 ra1 ra2];
# HPF
db = 3.999843853973347;
f0 = 1681.974450955533;
Q = 0.7071752369554196;
K = tan(pi * f0 / fs);
Vh = power(10.0, db / 20.0);
Vb = power(Vh, 0.4996667741545416);
pa0 = 1.0;
a0 = 1.0 + K / Q + K * K;
pb0 = (Vh + Vb * K / Q + K * K) / a0;
pb1 = 2.0 * (K * K - Vh) / a0;
pb2 = (Vh - Vb * K / Q + K * K) / a0;
pa1 = 2.0 * (K * K - 1.0) / a0;
pa2 = (1.0 - K / Q + K * K) / a0;
pb = [pb0 pb1 pb2];
pa = [pa0 pa1 pa2];
# Apply k-weighting
x = filter(rb, ra, x, [], 1);
x = filter(pb, pa, x, [], 1);
# - gating blocks (every 100 ms over 400 ms)
block_size = 0.4*fs;
block_overlap = 0.3*fs;
block_count = floor((size(x)(1)-block_size)/(block_size-block_overlap))+1+1;
x_blocked = zeros(block_size, block_count, size(x)(2));
for i=1:1:size(x)(2)
x_blocked(:,:,i) = buffer(x(:,i), block_size, 0.3*fs, 'nodelay');
end
lufs_blocked = 1/(block_size)*sum(x_blocked.^2, 1);
lufs_blocked = sum(lufs_blocked, 3);
# Apply absolute threshold
GAMMA_A = -70;
lufs_blocked = -0.691 + 10*log10(lufs_blocked);
valid_blocks = length(lufs_blocked);
valid_blocks = valid_blocks - length(lufs_blocked(lufs_blocked < GAMMA_A));
lufs_blocked(lufs_blocked < GAMMA_A) = -100;
lufs_blocked = 10.^((lufs_blocked+0.691)/10);
# Apply relative threshold
GAMMA_R = -0.691 + 10*log10(sum(lufs_blocked)/valid_blocks) - 10;
lufs_blocked = -0.691 + 10*log10(lufs_blocked);
valid_blocks = length(lufs_blocked);
valid_blocks = valid_blocks - length(lufs_blocked(lufs_blocked < GAMMA_R));
lufs_blocked(lufs_blocked < GAMMA_R) = -100;
lufs_blocked = 10.^((lufs_blocked+0.691)/10);
hold off
gated_lufs = -0.691 + 10*log10(sum(lufs_blocked)/valid_blocks);
end
if TEST_LUFS_HELPER
printf("Running calc_LUFS() selftest.\n");
printf("Compare the following results with a trusted LUFS calculator.\n");
fs = 44100;
k = 1:1:60*fs;
x = 0.3*sin(2*pi*1000/fs*k) + 0.2*sin(2*pi*1200/fs*k);
x = (x .* [1:1:30*fs, 30*fs:-1:1]./60./fs).';
audiowrite(cstrcat(pwd(), "/LUFS-selftest1.wav"), x, fs);
printf("LUFS-selftest1.wav should be %f LUFS\n", calc_LUFS(x, fs));
randn("seed", 1);
x = [0.2*randn(2, 10*fs) zeros(2, 10*fs) 0.1*randn(2, 10*fs)].';
x(:,1) = x(:,1) * 0.4 + 0.2;
audiowrite(cstrcat(pwd(), "/LUFS-selftest2.wav"), x, fs);
printf("LUFS-selftest2.wav should be %f LUFS\n", calc_LUFS(x, fs));
fs = 8000;
randn("seed", 2);
x = [0.2*randn(2, 10*fs) zeros(2, 10*fs) 0.1*randn(2, 10*fs)].';
x(:,1) = x(:,1) * 0.6 - 0.1;
# MMM: I'm not sure how trustworthy free loudness meters are
# in case of non-standard sample rates.
audiowrite(cstrcat(pwd(), "/LUFS-selftest3.wav"), x, fs);
printf("LUFS-selftest3.wav should be %f LUFS\n", calc_LUFS(x, fs));
end
## Test Loudness LUFS mode: block to short and all silent
CURRENT_TEST = "Loudness LUFS mode, short silent block";
fs= 44100;
x = zeros(ceil(fs*0.35), 2);
audiowrite(TMP_FILENAME, x, fs);
if EXPORT_TEST_SIGNALS
audiowrite(cstrcat(pwd(), "/Loudness-LUFS-silence-test.wav"), x, fs);
end
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-23 DualMono=1 NormalizeTo=0 StereoIndependent=0\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");
y = audioread(TMP_FILENAME);
do_test_equ(y, x, "identity");
## Test Loudness LUFS mode: stereo dependent
CURRENT_TEST = "Loudness LUFS mode, keep DC and stereo balance";
randn("seed", 1);
# Include some silence in the test signal to test loudness gating
# and vary the overall loudness over time.
x = [0.1*randn(15*fs, 2).', zeros(5*fs, 2).', 0.1*randn(15*fs, 2).'].';
x(:,1) = x(:,1) .* sin(2*pi/fs/35*(1:1:35*fs)).' .* 1.2;
x(:,2) = x(:,2) .* sin(2*pi/fs/35*(1:1:35*fs)).';
audiowrite(TMP_FILENAME, x, fs);
if EXPORT_TEST_SIGNALS
audiowrite(cstrcat(pwd(), "/Loudness-LUFS-stereo-test.wav"), x, fs);
end
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-23 DualMono=1 NormalizeTo=0 StereoIndependent=0\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");
y = audioread(TMP_FILENAME);
do_test_equ(calc_LUFS(y, fs), -23, "loudness", LUFS_epsilon);
do_test_neq(calc_LUFS(y(:,1), fs), calc_LUFS(y(:,2), fs), "stereo balance", 1);
## Test Loudness LUFS mode, stereo independent
CURRENT_TEST = "Loudness LUFS mode, stereo independence";
audiowrite(TMP_FILENAME, x, fs);
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-23 DualMono=0 NormalizeTo=0 StereoIndependent=1\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");
y = audioread(TMP_FILENAME);
# Independently processed stereo channels have half the target loudness.
do_test_equ(calc_LUFS(y(:,1), fs), -26, "channel 1 loudness", LUFS_epsilon);
do_test_equ(calc_LUFS(y(:,2), fs), -26, "channel 2 loudness", LUFS_epsilon);
## Test Loudness LUFS mode: mono as mono
CURRENT_TEST = "Test Loudness LUFS mode: mono as mono";
x = x(:,1);
audiowrite(TMP_FILENAME, x, fs);
if EXPORT_TEST_SIGNALS
audiowrite(cstrcat(pwd(), "/Loudness-LUFS-mono-test.wav"), x, fs);
end
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-26 DualMono=0 NormalizeTo=0 StereoIndependent=1\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=1\n"));
system("sync");
y = audioread(TMP_FILENAME);
do_test_equ(calc_LUFS(y, fs), -26, "loudness", LUFS_epsilon);
## Test Loudness LUFS mode: mono as dual-mono
CURRENT_TEST = "Test Loudness LUFS mode: mono as dual-mono";
audiowrite(TMP_FILENAME, x, fs);
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-26 DualMono=1 NormalizeTo=0 StereoIndependent=0\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=1\n"));
system("sync");
y = audioread(TMP_FILENAME);
# This shall be 3 LU quieter as it is compared to strict spec.
do_test_equ(calc_LUFS(y, fs), -29, "loudness", LUFS_epsilon);
## Test Loudness LUFS mode: multi-rate project
CURRENT_TEST = "Test Loudness LUFS mode: multi-rate project";
audiowrite(TMP_FILENAME, x, fs);
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
randn("seed", 2);
fs1= 8000;
x1 = [0.2*randn(2, 10*fs1) zeros(2, 10*fs1) 0.1*randn(2, 10*fs1)].';
x1(:,1) = x1(:,1) * 0.6;
audiowrite(TMP_FILENAME, x1, fs1);
if EXPORT_TEST_SIGNALS
audiowrite(cstrcat(pwd(), "/Loudness-LUFS-stereo-test-8kHz.wav"), x1, fs1);
end
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: LUFSLevel=-30 DualMono=0 NormalizeTo=0 StereoIndependent=0\n");
select_tracks(0, 1);
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=1\n"));
system("sync");
y = audioread(TMP_FILENAME);
select_tracks(1, 1);
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");
y1 = audioread(TMP_FILENAME);
do_test_equ(calc_LUFS(y, fs), -30, "loudness track 1", LUFS_epsilon);
# XXX: Audacity does not export at 8kHz through scripting thus this test is expected to fail!
# To ensure that this works you have to set the project rate to 8 kHz,
# export the track and check the results manually.
do_test_equ(calc_LUFS(y1, fs1), -30, "loudness track 2", LUFS_epsilon, true);
# No stereo balance check for track 1 - it's a mono track.
do_test_neq(calc_LUFS(y1(:,1), fs), calc_LUFS(y1(:,2), fs), "stereo balance track 2", LUFS_epsilon);
## Test Loudness RMS mode: stereo independent
CURRENT_TEST = "Loudness RMS mode, stereo independent";
randn("seed", 1);
fs= 44100;
x = 0.1*randn(30*fs, 2);
x(:,1) = x(:,1) * 0.6;
audiowrite(TMP_FILENAME, x, fs);
if EXPORT_TEST_SIGNALS
audiowrite(cstrcat(pwd(), "/Loudness-RMS-test.wav"), x, fs);
end
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: RMSLevel=-20 DualMono=0 NormalizeTo=1 StereoIndependent=1\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");
y = audioread(TMP_FILENAME);
do_test_equ(20*log10(sqrt(sum(y(:,1).*y(:,1)/length(y)))), -20, "channel 1 RMS");
do_test_equ(20*log10(sqrt(sum(y(:,2).*y(:,2)/length(y)))), -20, "channel 2 RMS");
## Test Loudness RMS mode: stereo dependent
CURRENT_TEST = "Loudness RMS mode, stereo dependent";
audiowrite(TMP_FILENAME, x, fs);
remove_all_tracks();
aud_do(cstrcat("Import2: Filename=\"", TMP_FILENAME, "\"\n"));
select_tracks(0, 100);
aud_do("LoudnessNormalization: RMSLevel=-22 DualMono=1 NormalizeTo=1 StereoIndependent=0\n");
aud_do(cstrcat("Export2: Filename=\"", TMP_FILENAME, "\" NumChannels=2\n"));
system("sync");
y = audioread(TMP_FILENAME);
# Stereo RMS must be calculated in quadratic domain.
do_test_equ(20*log10(sqrt(sum(rms(y).^2)/size(y)(2))), -22, "RMS");
do_test_neq(20*log10(rms(y(:,1))), 20*log10(rms(y(:,2))), "stereo balance", 1);
|