1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
|
/**********************************************************************
FFT.cpp
Dominic Mazzoni
September 2000
*******************************************************************//*!
\file FFT.cpp
\brief Fast Fourier Transform routines.
This file contains a few FFT routines, including a real-FFT
routine that is almost twice as fast as a normal complex FFT,
and a power spectrum routine when you know you don't care
about phase information.
Some of this code was based on a free implementation of an FFT
by Don Cross, available on the web at:
http://www.intersrv.com/~dcross/fft.html
The basic algorithm for his code was based on Numerican Recipes
in Fortran. I optimized his code further by reducing array
accesses, caching the bit reversal table, and eliminating
float-to-double conversions, and I added the routines to
calculate a real FFT and a real power spectrum.
*//*******************************************************************/
/*
Salvo Ventura - November 2006
Added more window functions:
* 4: Blackman
* 5: Blackman-Harris
* 6: Welch
* 7: Gaussian(a=2.5)
* 8: Gaussian(a=3.5)
* 9: Gaussian(a=4.5)
*/
#include "FFT.h"
#include "Internat.h"
#include "MemoryX.h"
#include <wx/wxcrtvararg.h>
#include <stdlib.h>
#include <math.h>
#include "RealFFTf.h"
using Floats = ArrayOf<float>;
static ArraysOf<int> gFFTBitTable;
static const size_t MaxFastBits = 16;
/* Declare Static functions */
static void InitFFT();
static bool IsPowerOfTwo(size_t x)
{
if (x < 2)
return false;
if (x & (x - 1)) /* Thanks to 'byang' for this cute trick! */
return false;
return true;
}
static size_t NumberOfBitsNeeded(size_t PowerOfTwo)
{
if (PowerOfTwo < 2) {
wxFprintf(stderr, "Error: FFT called with size %ld\n", PowerOfTwo);
exit(1);
}
size_t i = 0;
while (PowerOfTwo > 1)
PowerOfTwo >>= 1, ++i;
return i;
}
int ReverseBits(size_t index, size_t NumBits)
{
size_t i, rev;
for (i = rev = 0; i < NumBits; i++) {
rev = (rev << 1) | (index & 1);
index >>= 1;
}
return rev;
}
void InitFFT()
{
gFFTBitTable.reinit(MaxFastBits);
size_t len = 2;
for (size_t b = 1; b <= MaxFastBits; b++) {
auto &array = gFFTBitTable[b - 1];
array.reinit(len);
for (size_t i = 0; i < len; i++)
array[i] = ReverseBits(i, b);
len <<= 1;
}
}
void DeinitFFT()
{
gFFTBitTable.reset();
}
static inline size_t FastReverseBits(size_t i, size_t NumBits)
{
if (NumBits <= MaxFastBits)
return gFFTBitTable[NumBits - 1][i];
else
return ReverseBits(i, NumBits);
}
/*
* Complex Fast Fourier Transform
*/
void FFT(size_t NumSamples,
bool InverseTransform,
const float *RealIn, const float *ImagIn,
float *RealOut, float *ImagOut)
{
double angle_numerator = 2.0 * M_PI;
double tr, ti; /* temp real, temp imaginary */
if (!IsPowerOfTwo(NumSamples)) {
wxFprintf(stderr, "%ld is not a power of two\n", NumSamples);
exit(1);
}
if (!gFFTBitTable)
InitFFT();
if (!InverseTransform)
angle_numerator = -angle_numerator;
/* Number of bits needed to store indices */
auto NumBits = NumberOfBitsNeeded(NumSamples);
/*
** Do simultaneous data copy and bit-reversal ordering into outputs...
*/
for (size_t i = 0; i < NumSamples; i++) {
auto j = FastReverseBits(i, NumBits);
RealOut[j] = RealIn[i];
ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i];
}
/*
** Do the FFT itself...
*/
size_t BlockEnd = 1;
for (size_t BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) {
double delta_angle = angle_numerator / (double) BlockSize;
double sm2 = sin(-2 * delta_angle);
double sm1 = sin(-delta_angle);
double cm2 = cos(-2 * delta_angle);
double cm1 = cos(-delta_angle);
double w = 2 * cm1;
double ar0, ar1, ar2, ai0, ai1, ai2;
for (size_t i = 0; i < NumSamples; i += BlockSize) {
ar2 = cm2;
ar1 = cm1;
ai2 = sm2;
ai1 = sm1;
for (size_t j = i, n = 0; n < BlockEnd; j++, n++) {
ar0 = w * ar1 - ar2;
ar2 = ar1;
ar1 = ar0;
ai0 = w * ai1 - ai2;
ai2 = ai1;
ai1 = ai0;
size_t k = j + BlockEnd;
tr = ar0 * RealOut[k] - ai0 * ImagOut[k];
ti = ar0 * ImagOut[k] + ai0 * RealOut[k];
RealOut[k] = RealOut[j] - tr;
ImagOut[k] = ImagOut[j] - ti;
RealOut[j] += tr;
ImagOut[j] += ti;
}
}
BlockEnd = BlockSize;
}
/*
** Need to normalize if inverse transform...
*/
if (InverseTransform) {
float denom = (float) NumSamples;
for (size_t i = 0; i < NumSamples; i++) {
RealOut[i] /= denom;
ImagOut[i] /= denom;
}
}
}
/*
* Real Fast Fourier Transform
*
* This is merely a wrapper of RealFFTf() from RealFFTf.h.
*/
void RealFFT(size_t NumSamples, const float *RealIn, float *RealOut, float *ImagOut)
{
auto hFFT = GetFFT(NumSamples);
Floats pFFT{ NumSamples };
// Copy the data into the processing buffer
for(size_t i = 0; i < NumSamples; i++)
pFFT[i] = RealIn[i];
// Perform the FFT
RealFFTf(pFFT.get(), hFFT.get());
// Copy the data into the real and imaginary outputs
for (size_t i = 1; i<(NumSamples / 2); i++) {
RealOut[i]=pFFT[hFFT->BitReversed[i] ];
ImagOut[i]=pFFT[hFFT->BitReversed[i]+1];
}
// Handle the (real-only) DC and Fs/2 bins
RealOut[0] = pFFT[0];
RealOut[NumSamples / 2] = pFFT[1];
ImagOut[0] = ImagOut[NumSamples / 2] = 0;
// Fill in the upper half using symmetry properties
for(size_t i = NumSamples / 2 + 1; i < NumSamples; i++) {
RealOut[i] = RealOut[NumSamples-i];
ImagOut[i] = -ImagOut[NumSamples-i];
}
}
/*
* InverseRealFFT
*
* This function computes the inverse of RealFFT, above.
* The RealIn and ImagIn is assumed to be conjugate-symmetric
* and as a result the output is purely real.
* Only the first half of RealIn and ImagIn are used due to this
* symmetry assumption.
*
* This is merely a wrapper of InverseRealFFTf() from RealFFTf.h.
*/
void InverseRealFFT(size_t NumSamples, const float *RealIn, const float *ImagIn,
float *RealOut)
{
auto hFFT = GetFFT(NumSamples);
Floats pFFT{ NumSamples };
// Copy the data into the processing buffer
for (size_t i = 0; i < (NumSamples / 2); i++)
pFFT[2*i ] = RealIn[i];
if(ImagIn == NULL) {
for (size_t i = 0; i < (NumSamples / 2); i++)
pFFT[2*i+1] = 0;
} else {
for (size_t i = 0; i < (NumSamples / 2); i++)
pFFT[2*i+1] = ImagIn[i];
}
// Put the fs/2 component in the imaginary part of the DC bin
pFFT[1] = RealIn[NumSamples / 2];
// Perform the FFT
InverseRealFFTf(pFFT.get(), hFFT.get());
// Copy the data to the (purely real) output buffer
ReorderToTime(hFFT.get(), pFFT.get(), RealOut);
}
/*
* PowerSpectrum
*
* This function uses RealFFTf() from RealFFTf.h to perform the real
* FFT computation, and then squares the real and imaginary part of
* each coefficient, extracting the power and throwing away the phase.
*
* For speed, it does not call RealFFT, but duplicates some
* of its code.
*/
void PowerSpectrum(size_t NumSamples, const float *In, float *Out)
{
auto hFFT = GetFFT(NumSamples);
Floats pFFT{ NumSamples };
// Copy the data into the processing buffer
for (size_t i = 0; i<NumSamples; i++)
pFFT[i] = In[i];
// Perform the FFT
RealFFTf(pFFT.get(), hFFT.get());
// Copy the data into the real and imaginary outputs
for (size_t i = 1; i<NumSamples / 2; i++) {
Out[i]= (pFFT[hFFT->BitReversed[i] ]*pFFT[hFFT->BitReversed[i] ])
+ (pFFT[hFFT->BitReversed[i]+1]*pFFT[hFFT->BitReversed[i]+1]);
}
// Handle the (real-only) DC and Fs/2 bins
Out[0] = pFFT[0]*pFFT[0];
Out[NumSamples / 2] = pFFT[1]*pFFT[1];
}
/*
* Windowing Functions
*/
int NumWindowFuncs()
{
return eWinFuncCount;
}
const TranslatableString WindowFuncName(int whichFunction)
{
switch (whichFunction) {
default:
case eWinFuncRectangular:
return XO("Rectangular");
case eWinFuncBartlett:
/* i18n-hint a proper name */
return XO("Bartlett");
case eWinFuncHamming:
/* i18n-hint a proper name */
return XO("Hamming");
case eWinFuncHann:
/* i18n-hint a proper name */
return XO("Hann");
case eWinFuncBlackman:
/* i18n-hint a proper name */
return XO("Blackman");
case eWinFuncBlackmanHarris:
/* i18n-hint two proper names */
return XO("Blackman-Harris");
case eWinFuncWelch:
/* i18n-hint a proper name */
return XO("Welch");
case eWinFuncGaussian25:
/* i18n-hint a mathematical function named for C. F. Gauss */
return XO("Gaussian(a=2.5)");
case eWinFuncGaussian35:
/* i18n-hint a mathematical function named for C. F. Gauss */
return XO("Gaussian(a=3.5)");
case eWinFuncGaussian45:
/* i18n-hint a mathematical function named for C. F. Gauss */
return XO("Gaussian(a=4.5)");
}
}
void NewWindowFunc(int whichFunction, size_t NumSamplesIn, bool extraSample, float *in)
{
int NumSamples = (int)NumSamplesIn;
if (extraSample) {
wxASSERT(NumSamples > 0);
--NumSamples;
}
wxASSERT(NumSamples > 0);
switch (whichFunction) {
default:
wxFprintf(stderr, "FFT::WindowFunc - Invalid window function: %d\n", whichFunction);
break;
case eWinFuncRectangular:
// Multiply all by 1.0f -- do nothing
break;
case eWinFuncBartlett:
{
// Bartlett (triangular) window
const int nPairs = (NumSamples - 1) / 2; // whether even or odd NumSamples, this is correct
const float denom = NumSamples / 2.0f;
in[0] = 0.0f;
for (int ii = 1;
ii <= nPairs; // Yes, <=
++ii) {
const float value = ii / denom;
in[ii] *= value;
in[NumSamples - ii] *= value;
}
// When NumSamples is even, in[half] should be multiplied by 1.0, so unchanged
// When odd, the value of 1.0 is not reached
}
break;
case eWinFuncHamming:
{
// Hamming
const double multiplier = 2 * M_PI / NumSamples;
static const double coeff0 = 0.54, coeff1 = -0.46;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier);
}
break;
case eWinFuncHann:
{
// Hann
const double multiplier = 2 * M_PI / NumSamples;
static const double coeff0 = 0.5, coeff1 = -0.5;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier);
}
break;
case eWinFuncBlackman:
{
// Blackman
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
static const double coeff0 = 0.42, coeff1 = -0.5, coeff2 = 0.08;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier) + coeff2 * cos(ii * multiplier2);
}
break;
case eWinFuncBlackmanHarris:
{
// Blackman-Harris
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
const double multiplier3 = 3 * multiplier;
static const double coeff0 = 0.35875, coeff1 = -0.48829, coeff2 = 0.14128, coeff3 = -0.01168;
for (int ii = 0; ii < NumSamples; ++ii)
in[ii] *= coeff0 + coeff1 * cos(ii * multiplier) + coeff2 * cos(ii * multiplier2) + coeff3 * cos(ii * multiplier3);
}
break;
case eWinFuncWelch:
{
// Welch
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
in[ii] *= 4 * iOverN * (1 - iOverN);
}
}
break;
case eWinFuncGaussian25:
{
// Gaussian (a=2.5)
// Precalculate some values, and simplify the fmla to try and reduce overhead
static const double A = -2 * 2.5*2.5;
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
// full
// in[ii] *= exp(-0.5*(A*((ii-NumSamples/2)/NumSamples/2))*(A*((ii-NumSamples/2)/NumSamples/2)));
// reduced
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
}
}
break;
case eWinFuncGaussian35:
{
// Gaussian (a=3.5)
static const double A = -2 * 3.5*3.5;
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
}
}
break;
case eWinFuncGaussian45:
{
// Gaussian (a=4.5)
static const double A = -2 * 4.5*4.5;
const float N = NumSamples;
for (int ii = 0; ii < NumSamples; ++ii) {
const float iOverN = ii / N;
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN));
}
}
break;
}
if (extraSample && whichFunction != eWinFuncRectangular) {
double value = 0.0;
switch (whichFunction) {
case eWinFuncHamming:
value = 0.08;
break;
case eWinFuncGaussian25:
value = exp(-2 * 2.5 * 2.5 * 0.25);
break;
case eWinFuncGaussian35:
value = exp(-2 * 3.5 * 3.5 * 0.25);
break;
case eWinFuncGaussian45:
value = exp(-2 * 4.5 * 4.5 * 0.25);
break;
default:
break;
}
in[NumSamples] *= value;
}
}
// See cautions in FFT.h !
void WindowFunc(int whichFunction, size_t NumSamples, float *in)
{
bool extraSample = false;
switch (whichFunction)
{
case eWinFuncHamming:
case eWinFuncHann:
case eWinFuncBlackman:
case eWinFuncBlackmanHarris:
extraSample = true;
break;
default:
break;
case eWinFuncBartlett:
// PRL: Do nothing here either
// But I want to comment that the old function did this case
// wrong in the second half of the array, in case NumSamples was odd
// but I think that never happened, so I am not bothering to preserve that
break;
}
NewWindowFunc(whichFunction, NumSamples, extraSample, in);
}
void DerivativeOfWindowFunc(int whichFunction, size_t NumSamples, bool extraSample, float *in)
{
if (eWinFuncRectangular == whichFunction)
{
// Rectangular
// There are deltas at the ends
wxASSERT(NumSamples > 0);
--NumSamples;
// in[0] *= 1.0f;
for (int ii = 1; ii < (int)NumSamples; ++ii)
in[ii] = 0.0f;
in[NumSamples] *= -1.0f;
return;
}
if (extraSample) {
wxASSERT(NumSamples > 0);
--NumSamples;
}
wxASSERT(NumSamples > 0);
double A;
switch (whichFunction) {
case eWinFuncBartlett:
{
// Bartlett (triangular) window
// There are discontinuities in the derivative at the ends, and maybe at the midpoint
const int nPairs = (NumSamples - 1) / 2; // whether even or odd NumSamples, this is correct
const float value = 2.0f / NumSamples;
in[0] *=
// Average the two limiting values of discontinuous derivative
value / 2.0f;
for (int ii = 1;
ii <= nPairs; // Yes, <=
++ii) {
in[ii] *= value;
in[NumSamples - ii] *= -value;
}
if (NumSamples % 2 == 0)
// Average the two limiting values of discontinuous derivative
in[NumSamples / 2] = 0.0f;
if (extraSample)
in[NumSamples] *=
// Average the two limiting values of discontinuous derivative
-value / 2.0f;
else
// Halve the multiplier previously applied
// Average the two limiting values of discontinuous derivative
in[NumSamples - 1] *= 0.5f;
}
break;
case eWinFuncHamming:
{
// Hamming
// There are deltas at the ends
const double multiplier = 2 * M_PI / NumSamples;
static const double coeff0 = 0.54, coeff1 = -0.46 * multiplier;
// TODO This code should be more explicit about the precision it intends.
// For now we get C4305 warnings, truncation from 'const double' to 'float'
in[0] *= coeff0;
if (!extraSample)
--NumSamples;
for (int ii = 0; ii < (int)NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier);
if (extraSample)
in[NumSamples] *= - coeff0;
else
// slightly different
in[NumSamples] *= - coeff0 - coeff1 * sin(NumSamples * multiplier);
}
break;
case eWinFuncHann:
{
// Hann
const double multiplier = 2 * M_PI / NumSamples;
const double coeff1 = -0.5 * multiplier;
for (int ii = 0; ii < (int)NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier);
if (extraSample)
in[NumSamples] = 0.0f;
}
break;
case eWinFuncBlackman:
{
// Blackman
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
const double coeff1 = -0.5 * multiplier, coeff2 = 0.08 * multiplier2;
for (int ii = 0; ii < (int)NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier) - coeff2 * sin(ii * multiplier2);
if (extraSample)
in[NumSamples] = 0.0f;
}
break;
case eWinFuncBlackmanHarris:
{
// Blackman-Harris
const double multiplier = 2 * M_PI / NumSamples;
const double multiplier2 = 2 * multiplier;
const double multiplier3 = 3 * multiplier;
const double coeff1 = -0.48829 * multiplier,
coeff2 = 0.14128 * multiplier2, coeff3 = -0.01168 * multiplier3;
for (int ii = 0; ii < (int)NumSamples; ++ii)
in[ii] *= - coeff1 * sin(ii * multiplier) - coeff2 * sin(ii * multiplier2) - coeff3 * sin(ii * multiplier3);
if (extraSample)
in[NumSamples] = 0.0f;
}
break;
case eWinFuncWelch:
{
// Welch
const float N = NumSamples;
const float NN = NumSamples * NumSamples;
for (int ii = 0; ii < (int)NumSamples; ++ii) {
in[ii] *= 4 * (N - ii - ii) / NN;
}
if (extraSample)
in[NumSamples] = 0.0f;
// Average the two limiting values of discontinuous derivative
in[0] /= 2.0f;
in[NumSamples - 1] /= 2.0f;
}
break;
case eWinFuncGaussian25:
// Gaussian (a=2.5)
A = -2 * 2.5*2.5;
goto Gaussian;
case eWinFuncGaussian35:
// Gaussian (a=3.5)
A = -2 * 3.5*3.5;
goto Gaussian;
case eWinFuncGaussian45:
// Gaussian (a=4.5)
A = -2 * 4.5*4.5;
goto Gaussian;
Gaussian:
{
// Gaussian (a=2.5)
// There are deltas at the ends
const float invN = 1.0f / NumSamples;
const float invNN = invN * invN;
// Simplify formula from the loop for ii == 0, add term for the delta
in[0] *= exp(A * 0.25) * (1 - invN);
if (!extraSample)
--NumSamples;
for (int ii = 1; ii < (int)NumSamples; ++ii) {
const float iOverN = ii * invN;
in[ii] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN)) * (2 * ii * invNN - invN);
}
if (extraSample)
in[NumSamples] *= exp(A * 0.25) * (invN - 1);
else {
// Slightly different
const float iOverN = NumSamples * invN;
in[NumSamples] *= exp(A * (0.25 + (iOverN * iOverN) - iOverN)) * (2 * NumSamples * invNN - invN - 1);
}
}
break;
default:
wxFprintf(stderr, "FFT::DerivativeOfWindowFunc - Invalid window function: %d\n", whichFunction);
}
}
|