1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
/**********************************************************************
Audacity: A Digital Audio Editor
SpectrumAnalyst.cpp
Dominic Mazzoni
Paul Licameli split from FreqWindow.cpp
*******************************************************************//**
\class SpectrumAnalyst
\brief Used for finding the peaks, for snapping to peaks.
This class is used to do the 'find peaks' snapping both in FreqPlot
and in the spectrogram spectral selection.
*//*******************************************************************/
/*
Salvo Ventura - November 2006
Extended range check for additional FFT windows
*/
#include "SpectrumAnalyst.h"
#include "FFT.h"
#include "MemoryX.h"
SpectrumAnalyst::SpectrumAnalyst()
: mAlg(Spectrum)
, mRate(0.0)
, mWindowSize(0)
{
}
SpectrumAnalyst::~SpectrumAnalyst()
{
}
bool SpectrumAnalyst::Calculate(Algorithm alg, int windowFunc,
size_t windowSize, double rate,
const float *data, size_t dataLen,
float *pYMin, float *pYMax,
ProgressFn progress)
{
// Wipe old data
mProcessed.resize(0);
mRate = 0.0;
mWindowSize = 0;
// Validate inputs
int f = NumWindowFuncs();
if (!(windowSize >= 32 && windowSize <= 131072 &&
alg >= SpectrumAnalyst::Spectrum &&
alg < SpectrumAnalyst::NumAlgorithms &&
windowFunc >= 0 && windowFunc < f)) {
return false;
}
if (dataLen < windowSize) {
return false;
}
// Now repopulate
mRate = rate;
mWindowSize = windowSize;
mAlg = alg;
auto half = mWindowSize / 2;
mProcessed.resize(mWindowSize);
ArrayOf<float> in{ mWindowSize };
ArrayOf<float> out{ mWindowSize };
ArrayOf<float> out2{ mWindowSize };
ArrayOf<float> win{ mWindowSize };
for (size_t i = 0; i < mWindowSize; i++) {
mProcessed[i] = 0.0f;
win[i] = 1.0f;
}
WindowFunc(windowFunc, mWindowSize, win.get());
// Scale window such that an amplitude of 1.0 in the time domain
// shows an amplitude of 0dB in the frequency domain
double wss = 0;
for (size_t i = 0; i<mWindowSize; i++)
wss += win[i];
if(wss > 0)
wss = 4.0 / (wss*wss);
else
wss = 1.0;
size_t start = 0;
int windows = 0;
while (start + mWindowSize <= dataLen) {
for (size_t i = 0; i < mWindowSize; i++)
in[i] = win[i] * data[start + i];
switch (alg) {
case Spectrum:
PowerSpectrum(mWindowSize, in.get(), out.get());
for (size_t i = 0; i < half; i++)
mProcessed[i] += out[i];
break;
case Autocorrelation:
case CubeRootAutocorrelation:
case EnhancedAutocorrelation:
// Take FFT
RealFFT(mWindowSize, in.get(), out.get(), out2.get());
// Compute power
for (size_t i = 0; i < mWindowSize; i++)
in[i] = (out[i] * out[i]) + (out2[i] * out2[i]);
if (alg == Autocorrelation) {
for (size_t i = 0; i < mWindowSize; i++)
in[i] = sqrt(in[i]);
}
if (alg == CubeRootAutocorrelation ||
alg == EnhancedAutocorrelation) {
// Tolonen and Karjalainen recommend taking the cube root
// of the power, instead of the square root
for (size_t i = 0; i < mWindowSize; i++)
in[i] = pow(in[i], 1.0f / 3.0f);
}
// Take FFT
RealFFT(mWindowSize, in.get(), out.get(), out2.get());
// Take real part of result
for (size_t i = 0; i < half; i++)
mProcessed[i] += out[i];
break;
case Cepstrum:
RealFFT(mWindowSize, in.get(), out.get(), out2.get());
// Compute log power
// Set a sane lower limit assuming maximum time amplitude of 1.0
{
float power;
float minpower = 1e-20*mWindowSize*mWindowSize;
for (size_t i = 0; i < mWindowSize; i++)
{
power = (out[i] * out[i]) + (out2[i] * out2[i]);
if(power < minpower)
in[i] = log(minpower);
else
in[i] = log(power);
}
// Take IFFT
InverseRealFFT(mWindowSize, in.get(), NULL, out.get());
// Take real part of result
for (size_t i = 0; i < half; i++)
mProcessed[i] += out[i];
}
break;
default:
wxASSERT(false);
break;
} //switch
if (progress) {
progress(start, dataLen);
}
start += half;
windows++;
}
float mYMin = 1000000, mYMax = -1000000;
double scale;
switch (alg) {
case Spectrum:
// Convert to decibels
mYMin = 1000000.;
mYMax = -1000000.;
scale = wss / (double)windows;
for (size_t i = 0; i < half; i++)
{
mProcessed[i] = 10 * log10(mProcessed[i] * scale);
if(mProcessed[i] > mYMax)
mYMax = mProcessed[i];
else if(mProcessed[i] < mYMin)
mYMin = mProcessed[i];
}
break;
case Autocorrelation:
case CubeRootAutocorrelation:
for (size_t i = 0; i < half; i++)
mProcessed[i] = mProcessed[i] / windows;
// Find min/max
mYMin = mProcessed[0];
mYMax = mProcessed[0];
for (size_t i = 1; i < half; i++)
if (mProcessed[i] > mYMax)
mYMax = mProcessed[i];
else if (mProcessed[i] < mYMin)
mYMin = mProcessed[i];
break;
case EnhancedAutocorrelation:
for (size_t i = 0; i < half; i++)
mProcessed[i] = mProcessed[i] / windows;
// Peak Pruning as described by Tolonen and Karjalainen, 2000
// Clip at zero, copy to temp array
for (size_t i = 0; i < half; i++) {
if (mProcessed[i] < 0.0)
mProcessed[i] = float(0.0);
out[i] = mProcessed[i];
}
// Subtract a time-doubled signal (linearly interp.) from the original
// (clipped) signal
for (size_t i = 0; i < half; i++)
if ((i % 2) == 0)
mProcessed[i] -= out[i / 2];
else
mProcessed[i] -= ((out[i / 2] + out[i / 2 + 1]) / 2);
// Clip at zero again
for (size_t i = 0; i < half; i++)
if (mProcessed[i] < 0.0)
mProcessed[i] = float(0.0);
// Find NEW min/max
mYMin = mProcessed[0];
mYMax = mProcessed[0];
for (size_t i = 1; i < half; i++)
if (mProcessed[i] > mYMax)
mYMax = mProcessed[i];
else if (mProcessed[i] < mYMin)
mYMin = mProcessed[i];
break;
case Cepstrum:
for (size_t i = 0; i < half; i++)
mProcessed[i] = mProcessed[i] / windows;
// Find min/max, ignoring first and last few values
{
size_t ignore = 4;
mYMin = mProcessed[ignore];
mYMax = mProcessed[ignore];
for (size_t i = ignore + 1; i + ignore < half; i++)
if (mProcessed[i] > mYMax)
mYMax = mProcessed[i];
else if (mProcessed[i] < mYMin)
mYMin = mProcessed[i];
}
break;
default:
wxASSERT(false);
break;
}
if (pYMin)
*pYMin = mYMin;
if (pYMax)
*pYMax = mYMax;
return true;
}
const float *SpectrumAnalyst::GetProcessed() const
{
return &mProcessed[0];
}
int SpectrumAnalyst::GetProcessedSize() const
{
return mProcessed.size() / 2;
}
float SpectrumAnalyst::GetProcessedValue(float freq0, float freq1) const
{
float bin0, bin1, binwidth;
if (mAlg == Spectrum) {
bin0 = freq0 * mWindowSize / mRate;
bin1 = freq1 * mWindowSize / mRate;
} else {
bin0 = freq0 * mRate;
bin1 = freq1 * mRate;
}
binwidth = bin1 - bin0;
float value = float(0.0);
if (binwidth < 1.0) {
float binmid = (bin0 + bin1) / 2.0;
int ibin = (int)(binmid) - 1;
if (ibin < 1)
ibin = 1;
if (ibin >= GetProcessedSize() - 3)
ibin = std::max(0, GetProcessedSize() - 4);
value = CubicInterpolate(mProcessed[ibin],
mProcessed[ibin + 1],
mProcessed[ibin + 2],
mProcessed[ibin + 3], binmid - ibin);
} else {
if (bin0 < 0)
bin0 = 0;
if (bin1 >= GetProcessedSize())
bin1 = GetProcessedSize() - 1;
if ((int)(bin1) > (int)(bin0))
value += mProcessed[(int)(bin0)] * ((int)(bin0) + 1 - bin0);
bin0 = 1 + (int)(bin0);
while (bin0 < (int)(bin1)) {
value += mProcessed[(int)(bin0)];
bin0 += 1.0;
}
value += mProcessed[(int)(bin1)] * (bin1 - (int)(bin1));
value /= binwidth;
}
return value;
}
float SpectrumAnalyst::FindPeak(float xPos, float *pY) const
{
float bestpeak = 0.0f;
float bestValue = 0.0;
if (GetProcessedSize() > 1) {
bool up = (mProcessed[1] > mProcessed[0]);
float bestdist = 1000000;
for (int bin = 3; bin < GetProcessedSize() - 1; bin++) {
bool nowUp = mProcessed[bin] > mProcessed[bin - 1];
if (!nowUp && up) {
// Local maximum. Find actual value by cubic interpolation
int leftbin = bin - 2;
/*
if (leftbin < 1)
leftbin = 1;
*/
float valueAtMax = 0.0;
float max = leftbin + CubicMaximize(mProcessed[leftbin],
mProcessed[leftbin + 1],
mProcessed[leftbin + 2],
mProcessed[leftbin + 3],
&valueAtMax);
float thispeak;
if (mAlg == Spectrum)
thispeak = max * mRate / mWindowSize;
else
thispeak = max / mRate;
if (fabs(thispeak - xPos) < bestdist) {
bestpeak = thispeak;
bestdist = fabs(thispeak - xPos);
bestValue = valueAtMax;
// Should this test come after the enclosing if?
if (thispeak > xPos)
break;
}
}
up = nowUp;
}
}
if (pY)
*pY = bestValue;
return bestpeak;
}
// If f(0)=y0, f(1)=y1, f(2)=y2, and f(3)=y3, this function finds
// the degree-three polynomial which best fits these points and
// returns the value of this polynomial at a value x. Usually
// 0 < x < 3
float SpectrumAnalyst::CubicInterpolate(float y0, float y1, float y2, float y3, float x) const
{
float a, b, c, d;
a = y0 / -6.0 + y1 / 2.0 - y2 / 2.0 + y3 / 6.0;
b = y0 - 5.0 * y1 / 2.0 + 2.0 * y2 - y3 / 2.0;
c = -11.0 * y0 / 6.0 + 3.0 * y1 - 3.0 * y2 / 2.0 + y3 / 3.0;
d = y0;
float xx = x * x;
float xxx = xx * x;
return (a * xxx + b * xx + c * x + d);
}
float SpectrumAnalyst::CubicMaximize(float y0, float y1, float y2, float y3, float * max) const
{
// Find coefficients of cubic
float a, b, c, d;
a = y0 / -6.0 + y1 / 2.0 - y2 / 2.0 + y3 / 6.0;
b = y0 - 5.0 * y1 / 2.0 + 2.0 * y2 - y3 / 2.0;
c = -11.0 * y0 / 6.0 + 3.0 * y1 - 3.0 * y2 / 2.0 + y3 / 3.0;
d = y0;
// Take derivative
float da, db, dc;
da = 3 * a;
db = 2 * b;
dc = c;
// Find zeroes of derivative using quadratic equation
float discriminant = db * db - 4 * da * dc;
if (discriminant < 0.0)
return float(-1.0); // error
float x1 = (-db + sqrt(discriminant)) / (2 * da);
float x2 = (-db - sqrt(discriminant)) / (2 * da);
// The one which corresponds to a local _maximum_ in the
// cubic is the one we want - the one with a negative
// second derivative
float dda = 2 * da;
float ddb = db;
if (dda * x1 + ddb < 0)
{
*max = a*x1*x1*x1+b*x1*x1+c*x1+d;
return x1;
}
else
{
*max = a*x2*x2*x2+b*x2*x2+c*x2+d;
return x2;
}
}
|