File: SpectrumTransformer.cpp

package info (click to toggle)
audacity 3.7.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 125,252 kB
  • sloc: cpp: 358,238; ansic: 75,458; lisp: 7,761; sh: 3,410; python: 1,503; xml: 1,385; perl: 854; makefile: 122
file content (336 lines) | stat: -rw-r--r-- 10,008 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/**********************************************************************

Audacity: A Digital Audio Editor

SpectrumTransformer.cpp

Edward Hui

**********************************************************************/

#include "SpectrumTransformer.h"

#include <algorithm>
#include "FFT.h"

SpectrumTransformer::SpectrumTransformer( bool needsOutput,
   eWindowFunctions inWindowType,
   eWindowFunctions outWindowType,
   size_t windowSize, unsigned stepsPerWindow,
   bool leadingPadding, bool trailingPadding )
: mWindowSize{ windowSize }
, mSpectrumSize{ 1 + mWindowSize / 2 }
, mStepsPerWindow{ stepsPerWindow }
, mStepSize{ mWindowSize / mStepsPerWindow }
, mLeadingPadding{ leadingPadding }
, mTrailingPadding{ trailingPadding }
, hFFT{ GetFFT(mWindowSize) }
, mFFTBuffer( mWindowSize )
, mInWaveBuffer( mWindowSize )
, mOutOverlapBuffer( mWindowSize )
, mNeedsOutput{ needsOutput }
{
   // Check preconditions

   // Powers of 2 only!
   wxASSERT(mWindowSize > 0 &&
      0 == (mWindowSize & (mWindowSize - 1)));

   wxASSERT(mWindowSize % mStepsPerWindow == 0);

   wxASSERT(!(inWindowType == eWinFuncRectangular && outWindowType == eWinFuncRectangular));

   // To do:  check that inWindowType, outWindowType, and mStepsPerWindow
   // are compatible for correct overlap-add reconstruction.

   // Create windows as needed
   if (inWindowType != eWinFuncRectangular) {
      mInWindow.resize(mWindowSize);
      std::fill(mInWindow.begin(), mInWindow.end(), 1.0f);
      NewWindowFunc(inWindowType, mWindowSize, false, mInWindow.data());
   }
   if (outWindowType != eWinFuncRectangular) {
      mOutWindow.resize(mWindowSize);
      std::fill(mOutWindow.begin(), mOutWindow.end(), 1.0f);
      NewWindowFunc(outWindowType, mWindowSize, false, mOutWindow.data());
   }

   // Must scale one or the other window so overlap-add
   // comes out right
   double denom = 0;
   for (size_t ii = 0; ii < mWindowSize; ii += mStepSize) {
      denom +=
         (mInWindow.empty() ? 1.0 : mInWindow[ii])
         *
         (mOutWindow.empty() ? 1.0 : mOutWindow[ii]);
   }
   // It is ASSUMED that you have chosen window types and
   // steps per window, so that this sum denom would be the
   // same, starting the march anywhere from 0 to mStepSize - 1.
   // Else, your overlap-add won't be right, and the transformer
   // might not be an identity even when you do nothing to the
   // spectra.

   float *pWindow = 0;
   if (!mInWindow.empty())
      pWindow = mInWindow.data();
   else if (!mOutWindow.empty())
      pWindow = mOutWindow.data();
   else
      // Can only happen if both window types were rectangular
      wxASSERT(false);
   for (size_t ii = 0; ii < mWindowSize; ++ii)
      *pWindow++ /= denom;
}

auto SpectrumTransformer::NewWindow(size_t windowSize)
   -> std::unique_ptr<Window>
{
   return std::make_unique<Window>(windowSize);
}

bool SpectrumTransformer::DoStart()
{
   return true;
}

bool SpectrumTransformer::DoFinish()
{
   return true;
}

bool SpectrumTransformer::Start(size_t queueLength)
{
   // Prepare clean queue
   ResizeQueue(queueLength);
   for (auto &pWindow : mQueue)
      pWindow->Zero();

   // invoke derived method
   if (!DoStart())
      return false;

   // Clean input and output buffers
   {
      float *pFill;
      pFill = mInWaveBuffer.data();
      std::fill(pFill, pFill + mWindowSize, 0.0f);
      pFill = mOutOverlapBuffer.data();
      std::fill(pFill, pFill + mWindowSize, 0.0f);
   }

   if (!mLeadingPadding)
   {
      // We do not want leading zero padded windows
      mInWavePos = 0;
      mOutStepCount = -static_cast<int>(queueLength - 1);
   }
   else
   {
      // So that the queue gets primed with some windows,
      // zero-padded in front, the first having mStepSize
      // samples of wave data:
      mInWavePos = mWindowSize - mStepSize;
      // This starts negative, to count up until the queue fills:
      mOutStepCount = -static_cast<int>(queueLength - 1)
         // ... and then must pass over the padded windows,
         // before the first full window:
         - static_cast<int>(mStepsPerWindow - 1);
   }

   mInSampleCount = 0;

   return true;
}

bool SpectrumTransformer::ProcessSamples( const WindowProcessor &processor,
   const float *buffer, size_t len )
{
   if (buffer)
      mInSampleCount += len;
   bool success = true;
   while (success && len &&
          mOutStepCount * static_cast<int>(mStepSize) < mInSampleCount) {
      auto avail = std::min(len, mWindowSize - mInWavePos);
      if (buffer)
         memmove(&mInWaveBuffer[mInWavePos], buffer, avail * sizeof(float));
      else
         memset(&mInWaveBuffer[mInWavePos], 0, avail * sizeof(float));
      if (buffer)
         buffer += avail;
      len -= avail;
      mInWavePos += avail;

      if (mInWavePos == mWindowSize) {
         FillFirstWindow();

         // invoke derived method
         if ( (success = processor(*this)), success )
            OutputStep();

         ++mOutStepCount;
         RotateWindows();

         // Shift input.
         memmove(mInWaveBuffer.data(), &mInWaveBuffer[mStepSize],
            (mWindowSize - mStepSize) * sizeof(float));
         mInWavePos -= mStepSize;
      }
   }

   return success;
}

void SpectrumTransformer::ResizeQueue(size_t queueLength)
{
   int oldLen = mQueue.size();
   mQueue.resize(queueLength);
   for (size_t ii = oldLen; ii < queueLength; ++ii)
      // invoke derived method to get a queue element
      // with appropriate extra fields
      mQueue[ii] = NewWindow(mWindowSize);
}

void SpectrumTransformer::FillFirstWindow()
{
   // Transform samples to frequency domain, windowed as needed
   {
      auto pFFTBuffer = mFFTBuffer.data(), pInWaveBuffer = mInWaveBuffer.data();
      if (mInWindow.size() > 0) {
         auto pInWindow = mInWindow.data();
         for (size_t ii = 0; ii < mWindowSize; ++ii)
            *pFFTBuffer++ = *pInWaveBuffer++ * *pInWindow++;
      }
      else
         memmove(pFFTBuffer, pInWaveBuffer, mWindowSize * sizeof(float));
   }
   RealFFTf(mFFTBuffer.data(), hFFT.get());

   auto &record = Nth(0);

   // Store real and imaginary parts for later inverse FFT
   {
      float *pReal = &record.mRealFFTs[1];
      float *pImag = &record.mImagFFTs[1];
      int *pBitReversed = &hFFT->BitReversed[1];
      const auto last = mSpectrumSize - 1;
      for (size_t ii = 1; ii < last; ++ii) {
         const int kk = *pBitReversed++;
         *pReal++ = mFFTBuffer[kk];
         *pImag++ = mFFTBuffer[kk + 1];
      }
      // DC and Fs/2 bins need to be handled specially
      const float dc = mFFTBuffer[0];
      record.mRealFFTs[0] = dc;

      const float nyquist = mFFTBuffer[1];
      record.mImagFFTs[0] = nyquist; // For Fs/2, not really imaginary
   }
}

void SpectrumTransformer::RotateWindows()
{
   std::rotate(mQueue.begin(), mQueue.end() - 1, mQueue.end());
}

bool SpectrumTransformer::Finish(const WindowProcessor &processor)
{
   bool bLoopSuccess = true;
   if (mTrailingPadding) {
      // Keep flushing empty input buffers through the history
      // windows until we've output exactly as many samples as
      // were input.
      // Well, not exactly, but not more than one step-size of extra samples
      // at the end.

      while (bLoopSuccess &&
            mOutStepCount * static_cast<int>(mStepSize) < mInSampleCount)
         bLoopSuccess = ProcessSamples(processor, nullptr, mStepSize);
   }

   if (bLoopSuccess)
      // invoke derived method
      bLoopSuccess = DoFinish();

   return bLoopSuccess;
}

size_t SpectrumTransformer::CurrentQueueSize() const
{
   auto allocSize = mQueue.size();
   auto size = mOutStepCount + allocSize;
   if (mLeadingPadding)
      size += mStepsPerWindow - 1;

   if (size < allocSize)
      return size.as_size_t();
   else
      return allocSize;
}

// Formerly part of EffectNoiseReduction::Worker::ReduceNoise()
void SpectrumTransformer::OutputStep()
{
   if (!mNeedsOutput)
      return;
   if (QueueIsFull()) {
      const auto last = mSpectrumSize - 1;
      Window &record = **mQueue.rbegin();

      const float *pReal = &record.mRealFFTs[1];
      const float *pImag = &record.mImagFFTs[1];
      float *pBuffer = &mFFTBuffer[2];
      auto nn = mSpectrumSize - 2;
      for (; nn--;) {
         *pBuffer++ = *pReal++;
         *pBuffer++ = *pImag++;
      }
      mFFTBuffer[0] = record.mRealFFTs[0];
      // The Fs/2 component is stored as the imaginary part of the DC component
      mFFTBuffer[1] = record.mImagFFTs[0];

      // Invert the FFT into the output buffer
      InverseRealFFTf(mFFTBuffer.data(), hFFT.get());

      // Overlap-add
      if (mOutWindow.size() > 0) {
         auto pOut = mOutOverlapBuffer.data();
         auto pWindow = mOutWindow.data();
         auto pBitReversed = &hFFT->BitReversed[0];
         for (size_t jj = 0; jj < last; ++jj) {
            auto kk = *pBitReversed++;
            *pOut++ += mFFTBuffer[kk] * (*pWindow++);
            *pOut++ += mFFTBuffer[kk + 1] * (*pWindow++);
         }
      }
      else {
         auto pOut = mOutOverlapBuffer.data();
         auto pBitReversed = &hFFT->BitReversed[0];
         for (size_t jj = 0; jj < last; ++jj) {
            auto kk = *pBitReversed++;
            *pOut++ += mFFTBuffer[kk];
            *pOut++ += mFFTBuffer[kk + 1];
         }
      }
      auto buffer = mOutOverlapBuffer.data();
      if (mOutStepCount >= 0) {
         // Output the first portion of the overlap buffer, they're done
         DoOutput(buffer, mStepSize);
      }
      // Shift the remainder over.
      memmove(buffer, buffer + mStepSize, sizeof(float)*(mWindowSize - mStepSize));
      std::fill(buffer + mWindowSize - mStepSize, buffer + mWindowSize, 0.0f);
   }
}

bool SpectrumTransformer::QueueIsFull() const
{
   if (mLeadingPadding)
      return (mOutStepCount >= -static_cast<int>(mStepsPerWindow - 1));
   else
      return (mOutStepCount >= 0);
}

SpectrumTransformer::~SpectrumTransformer() = default;

SpectrumTransformer::Window::~Window() = default;