1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947
|
// fast_float by Daniel Lemire
// fast_float by João Paulo Magalhaes
// with contributions from Eugene Golushkov
// with contributions from Maksim Kita
// with contributions from Marcin Wojdyr
// with contributions from Neal Richardson
// with contributions from Tim Paine
// with contributions from Fabio Pellacini
// Permission is hereby granted, free of charge, to any
// person obtaining a copy of this software and associated
// documentation files (the "Software"), to deal in the
// Software without restriction, including without
// limitation the rights to use, copy, modify, merge,
// publish, distribute, sublicense, and/or sell copies of
// the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following
// conditions:
//
// The above copyright notice and this permission notice
// shall be included in all copies or substantial portions
// of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF
// ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
// TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
// SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
// CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
// IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
#ifndef FASTFLOAT_FAST_FLOAT_H
#define FASTFLOAT_FAST_FLOAT_H
#include <system_error>
namespace fast_float {
enum chars_format {
scientific = 1<<0,
fixed = 1<<2,
hex = 1<<3,
general = fixed | scientific
};
struct from_chars_result {
const char *ptr;
std::errc ec;
};
struct parse_options {
constexpr explicit parse_options(chars_format fmt = chars_format::general,
char dot = '.')
: format(fmt), decimal_point(dot) {}
/** Which number formats are accepted */
chars_format format;
/** The character used as decimal point */
char decimal_point;
};
/**
* This function parses the character sequence [first,last) for a number. It parses floating-point numbers expecting
* a locale-indepent format equivalent to what is used by std::strtod in the default ("C") locale.
* The resulting floating-point value is the closest floating-point values (using either float or double),
* using the "round to even" convention for values that would otherwise fall right in-between two values.
* That is, we provide exact parsing according to the IEEE standard.
*
* Given a successful parse, the pointer (`ptr`) in the returned value is set to point right after the
* parsed number, and the `value` referenced is set to the parsed value. In case of error, the returned
* `ec` contains a representative error, otherwise the default (`std::errc()`) value is stored.
*
* The implementation does not throw and does not allocate memory (e.g., with `new` or `malloc`).
*
* Like the C++17 standard, the `fast_float::from_chars` functions take an optional last argument of
* the type `fast_float::chars_format`. It is a bitset value: we check whether
* `fmt & fast_float::chars_format::fixed` and `fmt & fast_float::chars_format::scientific` are set
* to determine whether we allowe the fixed point and scientific notation respectively.
* The default is `fast_float::chars_format::general` which allows both `fixed` and `scientific`.
*/
template<typename T>
from_chars_result from_chars(const char *first, const char *last,
T &value, chars_format fmt = chars_format::general) noexcept;
/**
* Like from_chars, but accepts an `options` argument to govern number parsing.
*/
template<typename T>
from_chars_result from_chars_advanced(const char *first, const char *last,
T &value, parse_options options) noexcept;
}
#endif // FASTFLOAT_FAST_FLOAT_H
#ifndef FASTFLOAT_FLOAT_COMMON_H
#define FASTFLOAT_FLOAT_COMMON_H
#include <cfloat>
#include <cstdint>
#include <cassert>
#include <cstring>
#if (defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) \
|| defined(__amd64) || defined(__aarch64__) || defined(_M_ARM64) \
|| defined(__MINGW64__) \
|| defined(__s390x__) \
|| (defined(__ppc64__) || defined(__PPC64__) || defined(__ppc64le__) || defined(__PPC64LE__)) \
|| defined(__EMSCRIPTEN__))
#define FASTFLOAT_64BIT
#elif (defined(__i386) || defined(__i386__) || defined(_M_IX86) \
|| defined(__arm__) || defined(_M_ARM) \
|| defined(__MINGW32__))
#define FASTFLOAT_32BIT
#else
// Need to check incrementally, since SIZE_MAX is a size_t, avoid overflow.
// We can never tell the register width, but the SIZE_MAX is a good approximation.
// UINTPTR_MAX and INTPTR_MAX are optional, so avoid them for max portability.
#if SIZE_MAX == 0xffff
#error Unknown platform (16-bit, unsupported)
#elif SIZE_MAX == 0xffffffff
#define FASTFLOAT_32BIT
#elif SIZE_MAX == 0xffffffffffffffff
#define FASTFLOAT_64BIT
#else
#error Unknown platform (not 32-bit, not 64-bit?)
#endif
#endif
#if ((defined(_WIN32) || defined(_WIN64)) && !defined(__clang__))
#include <intrin.h>
#endif
#if defined(_MSC_VER) && !defined(__clang__)
#define FASTFLOAT_VISUAL_STUDIO 1
#endif
#ifdef _WIN32
#define FASTFLOAT_IS_BIG_ENDIAN 0
#else
#if defined(__APPLE__) || defined(__FreeBSD__)
#include <machine/endian.h>
#elif defined(sun) || defined(__sun)
#include <sys/byteorder.h>
#else
#include <endian.h>
#endif
#
#ifndef __BYTE_ORDER__
// safe choice
#define FASTFLOAT_IS_BIG_ENDIAN 0
#endif
#
#ifndef __ORDER_LITTLE_ENDIAN__
// safe choice
#define FASTFLOAT_IS_BIG_ENDIAN 0
#endif
#
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define FASTFLOAT_IS_BIG_ENDIAN 0
#else
#define FASTFLOAT_IS_BIG_ENDIAN 1
#endif
#endif
#ifdef FASTFLOAT_VISUAL_STUDIO
#define fastfloat_really_inline __forceinline
#else
#define fastfloat_really_inline inline __attribute__((always_inline))
#endif
#ifndef FASTFLOAT_ASSERT
#define FASTFLOAT_ASSERT(x) { if (!(x)) abort(); }
#endif
#ifndef FASTFLOAT_DEBUG_ASSERT
#include <cassert>
#define FASTFLOAT_DEBUG_ASSERT(x) assert(x)
#endif
// rust style `try!()` macro, or `?` operator
#define FASTFLOAT_TRY(x) { if (!(x)) return false; }
namespace fast_float {
// Compares two ASCII strings in a case insensitive manner.
inline bool fastfloat_strncasecmp(const char *input1, const char *input2,
size_t length) {
char running_diff{0};
for (size_t i = 0; i < length; i++) {
running_diff |= (input1[i] ^ input2[i]);
}
return (running_diff == 0) || (running_diff == 32);
}
#ifndef FLT_EVAL_METHOD
#error "FLT_EVAL_METHOD should be defined, please include cfloat."
#endif
// a pointer and a length to a contiguous block of memory
template <typename T>
struct span {
const T* ptr;
size_t length;
span(const T* _ptr, size_t _length) : ptr(_ptr), length(_length) {}
span() : ptr(nullptr), length(0) {}
constexpr size_t len() const noexcept {
return length;
}
const T& operator[](size_t index) const noexcept {
FASTFLOAT_DEBUG_ASSERT(index < length);
return ptr[index];
}
};
struct value128 {
uint64_t low;
uint64_t high;
value128(uint64_t _low, uint64_t _high) : low(_low), high(_high) {}
value128() : low(0), high(0) {}
};
/* result might be undefined when input_num is zero */
fastfloat_really_inline int leading_zeroes(uint64_t input_num) {
assert(input_num > 0);
#ifdef FASTFLOAT_VISUAL_STUDIO
#if defined(_M_X64) || defined(_M_ARM64)
unsigned long leading_zero = 0;
// Search the mask data from most significant bit (MSB)
// to least significant bit (LSB) for a set bit (1).
_BitScanReverse64(&leading_zero, input_num);
return (int)(63 - leading_zero);
#else
int last_bit = 0;
if(input_num & uint64_t(0xffffffff00000000)) input_num >>= 32, last_bit |= 32;
if(input_num & uint64_t( 0xffff0000)) input_num >>= 16, last_bit |= 16;
if(input_num & uint64_t( 0xff00)) input_num >>= 8, last_bit |= 8;
if(input_num & uint64_t( 0xf0)) input_num >>= 4, last_bit |= 4;
if(input_num & uint64_t( 0xc)) input_num >>= 2, last_bit |= 2;
if(input_num & uint64_t( 0x2)) input_num >>= 1, last_bit |= 1;
return 63 - last_bit;
#endif
#else
return __builtin_clzll(input_num);
#endif
}
#ifdef FASTFLOAT_32BIT
// slow emulation routine for 32-bit
fastfloat_really_inline uint64_t emulu(uint32_t x, uint32_t y) {
return x * (uint64_t)y;
}
// slow emulation routine for 32-bit
#if !defined(__MINGW64__)
fastfloat_really_inline uint64_t _umul128(uint64_t ab, uint64_t cd,
uint64_t *hi) {
uint64_t ad = emulu((uint32_t)(ab >> 32), (uint32_t)cd);
uint64_t bd = emulu((uint32_t)ab, (uint32_t)cd);
uint64_t adbc = ad + emulu((uint32_t)ab, (uint32_t)(cd >> 32));
uint64_t adbc_carry = !!(adbc < ad);
uint64_t lo = bd + (adbc << 32);
*hi = emulu((uint32_t)(ab >> 32), (uint32_t)(cd >> 32)) + (adbc >> 32) +
(adbc_carry << 32) + !!(lo < bd);
return lo;
}
#endif // !__MINGW64__
#endif // FASTFLOAT_32BIT
// compute 64-bit a*b
fastfloat_really_inline value128 full_multiplication(uint64_t a,
uint64_t b) {
value128 answer;
#ifdef _M_ARM64
// ARM64 has native support for 64-bit multiplications, no need to emulate
answer.high = __umulh(a, b);
answer.low = a * b;
#elif defined(FASTFLOAT_32BIT) || (defined(_WIN64) && !defined(__clang__))
answer.low = _umul128(a, b, &answer.high); // _umul128 not available on ARM64
#elif defined(FASTFLOAT_64BIT)
__uint128_t r = ((__uint128_t)a) * b;
answer.low = uint64_t(r);
answer.high = uint64_t(r >> 64);
#else
#error Not implemented
#endif
return answer;
}
struct adjusted_mantissa {
uint64_t mantissa{0};
int32_t power2{0}; // a negative value indicates an invalid result
adjusted_mantissa() = default;
bool operator==(const adjusted_mantissa &o) const {
return mantissa == o.mantissa && power2 == o.power2;
}
bool operator!=(const adjusted_mantissa &o) const {
return mantissa != o.mantissa || power2 != o.power2;
}
};
// Bias so we can get the real exponent with an invalid adjusted_mantissa.
constexpr static int32_t invalid_am_bias = -0x8000;
constexpr static double powers_of_ten_double[] = {
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11,
1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22};
constexpr static float powers_of_ten_float[] = {1e0, 1e1, 1e2, 1e3, 1e4, 1e5,
1e6, 1e7, 1e8, 1e9, 1e10};
template <typename T> struct binary_format {
static inline constexpr int mantissa_explicit_bits();
static inline constexpr int minimum_exponent();
static inline constexpr int infinite_power();
static inline constexpr int sign_index();
static inline constexpr int min_exponent_fast_path();
static inline constexpr int max_exponent_fast_path();
static inline constexpr int max_exponent_round_to_even();
static inline constexpr int min_exponent_round_to_even();
static inline constexpr uint64_t max_mantissa_fast_path();
static inline constexpr int largest_power_of_ten();
static inline constexpr int smallest_power_of_ten();
static inline constexpr T exact_power_of_ten(int64_t power);
static inline constexpr size_t max_digits();
};
template <> inline constexpr int binary_format<double>::mantissa_explicit_bits() {
return 52;
}
template <> inline constexpr int binary_format<float>::mantissa_explicit_bits() {
return 23;
}
template <> inline constexpr int binary_format<double>::max_exponent_round_to_even() {
return 23;
}
template <> inline constexpr int binary_format<float>::max_exponent_round_to_even() {
return 10;
}
template <> inline constexpr int binary_format<double>::min_exponent_round_to_even() {
return -4;
}
template <> inline constexpr int binary_format<float>::min_exponent_round_to_even() {
return -17;
}
template <> inline constexpr int binary_format<double>::minimum_exponent() {
return -1023;
}
template <> inline constexpr int binary_format<float>::minimum_exponent() {
return -127;
}
template <> inline constexpr int binary_format<double>::infinite_power() {
return 0x7FF;
}
template <> inline constexpr int binary_format<float>::infinite_power() {
return 0xFF;
}
template <> inline constexpr int binary_format<double>::sign_index() { return 63; }
template <> inline constexpr int binary_format<float>::sign_index() { return 31; }
template <> inline constexpr int binary_format<double>::min_exponent_fast_path() {
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
return 0;
#else
return -22;
#endif
}
template <> inline constexpr int binary_format<float>::min_exponent_fast_path() {
#if (FLT_EVAL_METHOD != 1) && (FLT_EVAL_METHOD != 0)
return 0;
#else
return -10;
#endif
}
template <> inline constexpr int binary_format<double>::max_exponent_fast_path() {
return 22;
}
template <> inline constexpr int binary_format<float>::max_exponent_fast_path() {
return 10;
}
template <> inline constexpr uint64_t binary_format<double>::max_mantissa_fast_path() {
return uint64_t(2) << mantissa_explicit_bits();
}
template <> inline constexpr uint64_t binary_format<float>::max_mantissa_fast_path() {
return uint64_t(2) << mantissa_explicit_bits();
}
template <>
inline constexpr double binary_format<double>::exact_power_of_ten(int64_t power) {
return powers_of_ten_double[power];
}
template <>
inline constexpr float binary_format<float>::exact_power_of_ten(int64_t power) {
return powers_of_ten_float[power];
}
template <>
inline constexpr int binary_format<double>::largest_power_of_ten() {
return 308;
}
template <>
inline constexpr int binary_format<float>::largest_power_of_ten() {
return 38;
}
template <>
inline constexpr int binary_format<double>::smallest_power_of_ten() {
return -342;
}
template <>
inline constexpr int binary_format<float>::smallest_power_of_ten() {
return -65;
}
template <> inline constexpr size_t binary_format<double>::max_digits() {
return 769;
}
template <> inline constexpr size_t binary_format<float>::max_digits() {
return 114;
}
template<typename T>
fastfloat_really_inline void to_float(bool negative, adjusted_mantissa am, T &value) {
uint64_t word = am.mantissa;
word |= uint64_t(am.power2) << binary_format<T>::mantissa_explicit_bits();
word = negative
? word | (uint64_t(1) << binary_format<T>::sign_index()) : word;
#if FASTFLOAT_IS_BIG_ENDIAN == 1
if (std::is_same<T, float>::value) {
::memcpy(&value, (char *)&word + 4, sizeof(T)); // extract value at offset 4-7 if float on big-endian
} else {
::memcpy(&value, &word, sizeof(T));
}
#else
// For little-endian systems:
::memcpy(&value, &word, sizeof(T));
#endif
}
} // namespace fast_float
#endif
#ifndef FASTFLOAT_ASCII_NUMBER_H
#define FASTFLOAT_ASCII_NUMBER_H
#include <cctype>
#include <cstdint>
#include <cstring>
#include <iterator>
namespace fast_float {
// Next function can be micro-optimized, but compilers are entirely
// able to optimize it well.
fastfloat_really_inline bool is_integer(char c) noexcept { return c >= '0' && c <= '9'; }
fastfloat_really_inline uint64_t byteswap(uint64_t val) {
return (val & 0xFF00000000000000) >> 56
| (val & 0x00FF000000000000) >> 40
| (val & 0x0000FF0000000000) >> 24
| (val & 0x000000FF00000000) >> 8
| (val & 0x00000000FF000000) << 8
| (val & 0x0000000000FF0000) << 24
| (val & 0x000000000000FF00) << 40
| (val & 0x00000000000000FF) << 56;
}
fastfloat_really_inline uint64_t read_u64(const char *chars) {
uint64_t val;
::memcpy(&val, chars, sizeof(uint64_t));
#if FASTFLOAT_IS_BIG_ENDIAN == 1
// Need to read as-if the number was in little-endian order.
val = byteswap(val);
#endif
return val;
}
fastfloat_really_inline void write_u64(uint8_t *chars, uint64_t val) {
#if FASTFLOAT_IS_BIG_ENDIAN == 1
// Need to read as-if the number was in little-endian order.
val = byteswap(val);
#endif
::memcpy(chars, &val, sizeof(uint64_t));
}
// credit @aqrit
fastfloat_really_inline uint32_t parse_eight_digits_unrolled(uint64_t val) {
const uint64_t mask = 0x000000FF000000FF;
const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
val -= 0x3030303030303030;
val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
return uint32_t(val);
}
fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept {
return parse_eight_digits_unrolled(read_u64(chars));
}
// credit @aqrit
fastfloat_really_inline bool is_made_of_eight_digits_fast(uint64_t val) noexcept {
return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
0x8080808080808080));
}
fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept {
return is_made_of_eight_digits_fast(read_u64(chars));
}
typedef span<const char> byte_span;
struct parsed_number_string {
int64_t exponent{0};
uint64_t mantissa{0};
const char *lastmatch{nullptr};
bool negative{false};
bool valid{false};
bool too_many_digits{false};
// contains the range of the significant digits
byte_span integer{}; // non-nullable
byte_span fraction{}; // nullable
};
// Assuming that you use no more than 19 digits, this will
// parse an ASCII string.
fastfloat_really_inline
parsed_number_string parse_number_string(const char *p, const char *pend, parse_options options) noexcept {
const chars_format fmt = options.format;
const char decimal_point = options.decimal_point;
parsed_number_string answer;
answer.valid = false;
answer.too_many_digits = false;
answer.negative = (*p == '-');
if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
++p;
if (p == pend) {
return answer;
}
if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot
return answer;
}
}
const char *const start_digits = p;
uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
p += 8;
}
while ((p != pend) && is_integer(*p)) {
// a multiplication by 10 is cheaper than an arbitrary integer
// multiplication
i = 10 * i +
uint64_t(*p - '0'); // might overflow, we will handle the overflow later
++p;
}
const char *const end_of_integer_part = p;
int64_t digit_count = int64_t(end_of_integer_part - start_digits);
answer.integer = byte_span(start_digits, size_t(digit_count));
int64_t exponent = 0;
if ((p != pend) && (*p == decimal_point)) {
++p;
const char* before = p;
// can occur at most twice without overflowing, but let it occur more, since
// for integers with many digits, digit parsing is the primary bottleneck.
while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
p += 8;
}
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - '0');
++p;
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
}
exponent = before - p;
answer.fraction = byte_span(before, size_t(p - before));
digit_count -= exponent;
}
// we must have encountered at least one integer!
if (digit_count == 0) {
return answer;
}
int64_t exp_number = 0; // explicit exponential part
if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) {
const char * location_of_e = p;
++p;
bool neg_exp = false;
if ((p != pend) && ('-' == *p)) {
neg_exp = true;
++p;
} else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
++p;
}
if ((p == pend) || !is_integer(*p)) {
if(!(fmt & chars_format::fixed)) {
// We are in error.
return answer;
}
// Otherwise, we will be ignoring the 'e'.
p = location_of_e;
} else {
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - '0');
if (exp_number < 0x10000000) {
exp_number = 10 * exp_number + digit;
}
++p;
}
if(neg_exp) { exp_number = - exp_number; }
exponent += exp_number;
}
} else {
// If it scientific and not fixed, we have to bail out.
if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; }
}
answer.lastmatch = p;
answer.valid = true;
// If we frequently had to deal with long strings of digits,
// we could extend our code by using a 128-bit integer instead
// of a 64-bit integer. However, this is uncommon.
//
// We can deal with up to 19 digits.
if (digit_count > 19) { // this is uncommon
// It is possible that the integer had an overflow.
// We have to handle the case where we have 0.0000somenumber.
// We need to be mindful of the case where we only have zeroes...
// E.g., 0.000000000...000.
const char *start = start_digits;
while ((start != pend) && (*start == '0' || *start == decimal_point)) {
if(*start == '0') { digit_count --; }
start++;
}
if (digit_count > 19) {
answer.too_many_digits = true;
// Let us start again, this time, avoiding overflows.
// We don't need to check if is_integer, since we use the
// pre-tokenized spans from above.
i = 0;
p = answer.integer.ptr;
const char* int_end = p + answer.integer.len();
const uint64_t minimal_nineteen_digit_integer{1000000000000000000};
while((i < minimal_nineteen_digit_integer) && (p != int_end)) {
i = i * 10 + uint64_t(*p - '0');
++p;
}
if (i >= minimal_nineteen_digit_integer) { // We have a big integers
exponent = end_of_integer_part - p + exp_number;
} else { // We have a value with a fractional component.
p = answer.fraction.ptr;
const char* frac_end = p + answer.fraction.len();
while((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
i = i * 10 + uint64_t(*p - '0');
++p;
}
exponent = answer.fraction.ptr - p + exp_number;
}
// We have now corrected both exponent and i, to a truncated value
}
}
answer.exponent = exponent;
answer.mantissa = i;
return answer;
}
} // namespace fast_float
#endif
#ifndef FASTFLOAT_FAST_TABLE_H
#define FASTFLOAT_FAST_TABLE_H
#include <cstdint>
namespace fast_float {
/**
* When mapping numbers from decimal to binary,
* we go from w * 10^q to m * 2^p but we have
* 10^q = 5^q * 2^q, so effectively
* we are trying to match
* w * 2^q * 5^q to m * 2^p. Thus the powers of two
* are not a concern since they can be represented
* exactly using the binary notation, only the powers of five
* affect the binary significand.
*/
/**
* The smallest non-zero float (binary64) is 2^−1074.
* We take as input numbers of the form w x 10^q where w < 2^64.
* We have that w * 10^-343 < 2^(64-344) 5^-343 < 2^-1076.
* However, we have that
* (2^64-1) * 10^-342 = (2^64-1) * 2^-342 * 5^-342 > 2^−1074.
* Thus it is possible for a number of the form w * 10^-342 where
* w is a 64-bit value to be a non-zero floating-point number.
*********
* Any number of form w * 10^309 where w>= 1 is going to be
* infinite in binary64 so we never need to worry about powers
* of 5 greater than 308.
*/
template <class unused = void>
struct powers_template {
constexpr static int smallest_power_of_five = binary_format<double>::smallest_power_of_ten();
constexpr static int largest_power_of_five = binary_format<double>::largest_power_of_ten();
constexpr static int number_of_entries = 2 * (largest_power_of_five - smallest_power_of_five + 1);
// Powers of five from 5^-342 all the way to 5^308 rounded toward one.
static const uint64_t power_of_five_128[number_of_entries];
};
template <class unused>
const uint64_t powers_template<unused>::power_of_five_128[number_of_entries] = {
0xeef453d6923bd65a,0x113faa2906a13b3f,
0x9558b4661b6565f8,0x4ac7ca59a424c507,
0xbaaee17fa23ebf76,0x5d79bcf00d2df649,
0xe95a99df8ace6f53,0xf4d82c2c107973dc,
0x91d8a02bb6c10594,0x79071b9b8a4be869,
0xb64ec836a47146f9,0x9748e2826cdee284,
0xe3e27a444d8d98b7,0xfd1b1b2308169b25,
0x8e6d8c6ab0787f72,0xfe30f0f5e50e20f7,
0xb208ef855c969f4f,0xbdbd2d335e51a935,
0xde8b2b66b3bc4723,0xad2c788035e61382,
0x8b16fb203055ac76,0x4c3bcb5021afcc31,
0xaddcb9e83c6b1793,0xdf4abe242a1bbf3d,
0xd953e8624b85dd78,0xd71d6dad34a2af0d,
0x87d4713d6f33aa6b,0x8672648c40e5ad68,
0xa9c98d8ccb009506,0x680efdaf511f18c2,
0xd43bf0effdc0ba48,0x212bd1b2566def2,
0x84a57695fe98746d,0x14bb630f7604b57,
0xa5ced43b7e3e9188,0x419ea3bd35385e2d,
0xcf42894a5dce35ea,0x52064cac828675b9,
0x818995ce7aa0e1b2,0x7343efebd1940993,
0xa1ebfb4219491a1f,0x1014ebe6c5f90bf8,
0xca66fa129f9b60a6,0xd41a26e077774ef6,
0xfd00b897478238d0,0x8920b098955522b4,
0x9e20735e8cb16382,0x55b46e5f5d5535b0,
0xc5a890362fddbc62,0xeb2189f734aa831d,
0xf712b443bbd52b7b,0xa5e9ec7501d523e4,
0x9a6bb0aa55653b2d,0x47b233c92125366e,
0xc1069cd4eabe89f8,0x999ec0bb696e840a,
0xf148440a256e2c76,0xc00670ea43ca250d,
0x96cd2a865764dbca,0x380406926a5e5728,
0xbc807527ed3e12bc,0xc605083704f5ecf2,
0xeba09271e88d976b,0xf7864a44c633682e,
0x93445b8731587ea3,0x7ab3ee6afbe0211d,
0xb8157268fdae9e4c,0x5960ea05bad82964,
0xe61acf033d1a45df,0x6fb92487298e33bd,
0x8fd0c16206306bab,0xa5d3b6d479f8e056,
0xb3c4f1ba87bc8696,0x8f48a4899877186c,
0xe0b62e2929aba83c,0x331acdabfe94de87,
0x8c71dcd9ba0b4925,0x9ff0c08b7f1d0b14,
0xaf8e5410288e1b6f,0x7ecf0ae5ee44dd9,
0xdb71e91432b1a24a,0xc9e82cd9f69d6150,
0x892731ac9faf056e,0xbe311c083a225cd2,
0xab70fe17c79ac6ca,0x6dbd630a48aaf406,
0xd64d3d9db981787d,0x92cbbccdad5b108,
0x85f0468293f0eb4e,0x25bbf56008c58ea5,
0xa76c582338ed2621,0xaf2af2b80af6f24e,
0xd1476e2c07286faa,0x1af5af660db4aee1,
0x82cca4db847945ca,0x50d98d9fc890ed4d,
0xa37fce126597973c,0xe50ff107bab528a0,
0xcc5fc196fefd7d0c,0x1e53ed49a96272c8,
0xff77b1fcbebcdc4f,0x25e8e89c13bb0f7a,
0x9faacf3df73609b1,0x77b191618c54e9ac,
0xc795830d75038c1d,0xd59df5b9ef6a2417,
0xf97ae3d0d2446f25,0x4b0573286b44ad1d,
0x9becce62836ac577,0x4ee367f9430aec32,
0xc2e801fb244576d5,0x229c41f793cda73f,
0xf3a20279ed56d48a,0x6b43527578c1110f,
0x9845418c345644d6,0x830a13896b78aaa9,
0xbe5691ef416bd60c,0x23cc986bc656d553,
0xedec366b11c6cb8f,0x2cbfbe86b7ec8aa8,
0x94b3a202eb1c3f39,0x7bf7d71432f3d6a9,
0xb9e08a83a5e34f07,0xdaf5ccd93fb0cc53,
0xe858ad248f5c22c9,0xd1b3400f8f9cff68,
0x91376c36d99995be,0x23100809b9c21fa1,
0xb58547448ffffb2d,0xabd40a0c2832a78a,
0xe2e69915b3fff9f9,0x16c90c8f323f516c,
0x8dd01fad907ffc3b,0xae3da7d97f6792e3,
0xb1442798f49ffb4a,0x99cd11cfdf41779c,
0xdd95317f31c7fa1d,0x40405643d711d583,
0x8a7d3eef7f1cfc52,0x482835ea666b2572,
0xad1c8eab5ee43b66,0xda3243650005eecf,
0xd863b256369d4a40,0x90bed43e40076a82,
0x873e4f75e2224e68,0x5a7744a6e804a291,
0xa90de3535aaae202,0x711515d0a205cb36,
0xd3515c2831559a83,0xd5a5b44ca873e03,
0x8412d9991ed58091,0xe858790afe9486c2,
0xa5178fff668ae0b6,0x626e974dbe39a872,
0xce5d73ff402d98e3,0xfb0a3d212dc8128f,
0x80fa687f881c7f8e,0x7ce66634bc9d0b99,
0xa139029f6a239f72,0x1c1fffc1ebc44e80,
0xc987434744ac874e,0xa327ffb266b56220,
0xfbe9141915d7a922,0x4bf1ff9f0062baa8,
0x9d71ac8fada6c9b5,0x6f773fc3603db4a9,
0xc4ce17b399107c22,0xcb550fb4384d21d3,
0xf6019da07f549b2b,0x7e2a53a146606a48,
0x99c102844f94e0fb,0x2eda7444cbfc426d,
0xc0314325637a1939,0xfa911155fefb5308,
0xf03d93eebc589f88,0x793555ab7eba27ca,
0x96267c7535b763b5,0x4bc1558b2f3458de,
0xbbb01b9283253ca2,0x9eb1aaedfb016f16,
0xea9c227723ee8bcb,0x465e15a979c1cadc,
0x92a1958a7675175f,0xbfacd89ec191ec9,
0xb749faed14125d36,0xcef980ec671f667b,
0xe51c79a85916f484,0x82b7e12780e7401a,
0x8f31cc0937ae58d2,0xd1b2ecb8b0908810,
0xb2fe3f0b8599ef07,0x861fa7e6dcb4aa15,
0xdfbdcece67006ac9,0x67a791e093e1d49a,
0x8bd6a141006042bd,0xe0c8bb2c5c6d24e0,
0xaecc49914078536d,0x58fae9f773886e18,
0xda7f5bf590966848,0xaf39a475506a899e,
0x888f99797a5e012d,0x6d8406c952429603,
0xaab37fd7d8f58178,0xc8e5087ba6d33b83,
0xd5605fcdcf32e1d6,0xfb1e4a9a90880a64,
0x855c3be0a17fcd26,0x5cf2eea09a55067f,
0xa6b34ad8c9dfc06f,0xf42faa48c0ea481e,
0xd0601d8efc57b08b,0xf13b94daf124da26,
0x823c12795db6ce57,0x76c53d08d6b70858,
0xa2cb1717b52481ed,0x54768c4b0c64ca6e,
0xcb7ddcdda26da268,0xa9942f5dcf7dfd09,
0xfe5d54150b090b02,0xd3f93b35435d7c4c,
0x9efa548d26e5a6e1,0xc47bc5014a1a6daf,
0xc6b8e9b0709f109a,0x359ab6419ca1091b,
0xf867241c8cc6d4c0,0xc30163d203c94b62,
0x9b407691d7fc44f8,0x79e0de63425dcf1d,
0xc21094364dfb5636,0x985915fc12f542e4,
0xf294b943e17a2bc4,0x3e6f5b7b17b2939d,
0x979cf3ca6cec5b5a,0xa705992ceecf9c42,
0xbd8430bd08277231,0x50c6ff782a838353,
0xece53cec4a314ebd,0xa4f8bf5635246428,
0x940f4613ae5ed136,0x871b7795e136be99,
0xb913179899f68584,0x28e2557b59846e3f,
0xe757dd7ec07426e5,0x331aeada2fe589cf,
0x9096ea6f3848984f,0x3ff0d2c85def7621,
0xb4bca50b065abe63,0xfed077a756b53a9,
0xe1ebce4dc7f16dfb,0xd3e8495912c62894,
0x8d3360f09cf6e4bd,0x64712dd7abbbd95c,
0xb080392cc4349dec,0xbd8d794d96aacfb3,
0xdca04777f541c567,0xecf0d7a0fc5583a0,
0x89e42caaf9491b60,0xf41686c49db57244,
0xac5d37d5b79b6239,0x311c2875c522ced5,
0xd77485cb25823ac7,0x7d633293366b828b,
0x86a8d39ef77164bc,0xae5dff9c02033197,
0xa8530886b54dbdeb,0xd9f57f830283fdfc,
0xd267caa862a12d66,0xd072df63c324fd7b,
0x8380dea93da4bc60,0x4247cb9e59f71e6d,
0xa46116538d0deb78,0x52d9be85f074e608,
0xcd795be870516656,0x67902e276c921f8b,
0x806bd9714632dff6,0xba1cd8a3db53b6,
0xa086cfcd97bf97f3,0x80e8a40eccd228a4,
0xc8a883c0fdaf7df0,0x6122cd128006b2cd,
0xfad2a4b13d1b5d6c,0x796b805720085f81,
0x9cc3a6eec6311a63,0xcbe3303674053bb0,
0xc3f490aa77bd60fc,0xbedbfc4411068a9c,
0xf4f1b4d515acb93b,0xee92fb5515482d44,
0x991711052d8bf3c5,0x751bdd152d4d1c4a,
0xbf5cd54678eef0b6,0xd262d45a78a0635d,
0xef340a98172aace4,0x86fb897116c87c34,
0x9580869f0e7aac0e,0xd45d35e6ae3d4da0,
0xbae0a846d2195712,0x8974836059cca109,
0xe998d258869facd7,0x2bd1a438703fc94b,
0x91ff83775423cc06,0x7b6306a34627ddcf,
0xb67f6455292cbf08,0x1a3bc84c17b1d542,
0xe41f3d6a7377eeca,0x20caba5f1d9e4a93,
0x8e938662882af53e,0x547eb47b7282ee9c,
0xb23867fb2a35b28d,0xe99e619a4f23aa43,
0xdec681f9f4c31f31,0x6405fa00e2ec94d4,
0x8b3c113c38f9f37e,0xde83bc408dd3dd04,
0xae0b158b4738705e,0x9624ab50b148d445,
0xd98ddaee19068c76,0x3badd624dd9b0957,
0x87f8a8d4cfa417c9,0xe54ca5d70a80e5d6,
0xa9f6d30a038d1dbc,0x5e9fcf4ccd211f4c,
0xd47487cc8470652b,0x7647c3200069671f,
0x84c8d4dfd2c63f3b,0x29ecd9f40041e073,
0xa5fb0a17c777cf09,0xf468107100525890,
0xcf79cc9db955c2cc,0x7182148d4066eeb4,
0x81ac1fe293d599bf,0xc6f14cd848405530,
0xa21727db38cb002f,0xb8ada00e5a506a7c,
0xca9cf1d206fdc03b,0xa6d90811f0e4851c,
0xfd442e4688bd304a,0x908f4a166d1da663,
0x9e4a9cec15763e2e,0x9a598e4e043287fe,
0xc5dd44271ad3cdba,0x40eff1e1853f29fd,
0xf7549530e188c128,0xd12bee59e68ef47c,
0x9a94dd3e8cf578b9,0x82bb74f8301958ce,
0xc13a148e3032d6e7,0xe36a52363c1faf01,
0xf18899b1bc3f8ca1,0xdc44e6c3cb279ac1,
0x96f5600f15a7b7e5,0x29ab103a5ef8c0b9,
0xbcb2b812db11a5de,0x7415d448f6b6f0e7,
0xebdf661791d60f56,0x111b495b3464ad21,
0x936b9fcebb25c995,0xcab10dd900beec34,
0xb84687c269ef3bfb,0x3d5d514f40eea742,
0xe65829b3046b0afa,0xcb4a5a3112a5112,
0x8ff71a0fe2c2e6dc,0x47f0e785eaba72ab,
0xb3f4e093db73a093,0x59ed216765690f56,
0xe0f218b8d25088b8,0x306869c13ec3532c,
0x8c974f7383725573,0x1e414218c73a13fb,
0xafbd2350644eeacf,0xe5d1929ef90898fa,
0xdbac6c247d62a583,0xdf45f746b74abf39,
0x894bc396ce5da772,0x6b8bba8c328eb783,
0xab9eb47c81f5114f,0x66ea92f3f326564,
0xd686619ba27255a2,0xc80a537b0efefebd,
0x8613fd0145877585,0xbd06742ce95f5f36,
0xa798fc4196e952e7,0x2c48113823b73704,
0xd17f3b51fca3a7a0,0xf75a15862ca504c5,
0x82ef85133de648c4,0x9a984d73dbe722fb,
0xa3ab66580d5fdaf5,0xc13e60d0d2e0ebba,
0xcc963fee10b7d1b3,0x318df905079926a8,
0xffbbcfe994e5c61f,0xfdf17746497f7052,
0x9fd561f1fd0f9bd3,0xfeb6ea8bedefa633,
0xc7caba6e7c5382c8,0xfe64a52ee96b8fc0,
0xf9bd690a1b68637b,0x3dfdce7aa3c673b0,
0x9c1661a651213e2d,0x6bea10ca65c084e,
0xc31bfa0fe5698db8,0x486e494fcff30a62,
0xf3e2f893dec3f126,0x5a89dba3c3efccfa,
0x986ddb5c6b3a76b7,0xf89629465a75e01c,
0xbe89523386091465,0xf6bbb397f1135823,
0xee2ba6c0678b597f,0x746aa07ded582e2c,
0x94db483840b717ef,0xa8c2a44eb4571cdc,
0xba121a4650e4ddeb,0x92f34d62616ce413,
0xe896a0d7e51e1566,0x77b020baf9c81d17,
0x915e2486ef32cd60,0xace1474dc1d122e,
0xb5b5ada8aaff80b8,0xd819992132456ba,
0xe3231912d5bf60e6,0x10e1fff697ed6c69,
0x8df5efabc5979c8f,0xca8d3ffa1ef463c1,
0xb1736b96b6fd83b3,0xbd308ff8a6b17cb2,
0xddd0467c64bce4a0,0xac7cb3f6d05ddbde,
0x8aa22c0dbef60ee4,0x6bcdf07a423aa96b,
0xad4ab7112eb3929d,0x86c16c98d2c953c6,
0xd89d64d57a607744,0xe871c7bf077ba8b7,
0x87625f056c7c4a8b,0x11471cd764ad4972,
0xa93af6c6c79b5d2d,0xd598e40d3dd89bcf,
0xd389b47879823479,0x4aff1d108d4ec2c3,
0x843610cb4bf160cb,0xcedf722a585139ba,
0xa54394fe1eedb8fe,0xc2974eb4ee658828,
0xce947a3da6a9273e,0x733d226229feea32,
0x811ccc668829b887,0x806357d5a3f525f,
0xa163ff802a3426a8,0xca07c2dcb0cf26f7,
0xc9bcff6034c13052,0xfc89b393dd02f0b5,
0xfc2c3f3841f17c67,0xbbac2078d443ace2,
0x9d9ba7832936edc0,0xd54b944b84aa4c0d,
0xc5029163f384a931,0xa9e795e65d4df11,
0xf64335bcf065d37d,0x4d4617b5ff4a16d5,
0x99ea0196163fa42e,0x504bced1bf8e4e45,
0xc06481fb9bcf8d39,0xe45ec2862f71e1d6,
0xf07da27a82c37088,0x5d767327bb4e5a4c,
0x964e858c91ba2655,0x3a6a07f8d510f86f,
0xbbe226efb628afea,0x890489f70a55368b,
0xeadab0aba3b2dbe5,0x2b45ac74ccea842e,
0x92c8ae6b464fc96f,0x3b0b8bc90012929d,
0xb77ada0617e3bbcb,0x9ce6ebb40173744,
0xe55990879ddcaabd,0xcc420a6a101d0515,
0x8f57fa54c2a9eab6,0x9fa946824a12232d,
0xb32df8e9f3546564,0x47939822dc96abf9,
0xdff9772470297ebd,0x59787e2b93bc56f7,
0x8bfbea76c619ef36,0x57eb4edb3c55b65a,
0xaefae51477a06b03,0xede622920b6b23f1,
0xdab99e59958885c4,0xe95fab368e45eced,
0x88b402f7fd75539b,0x11dbcb0218ebb414,
0xaae103b5fcd2a881,0xd652bdc29f26a119,
0xd59944a37c0752a2,0x4be76d3346f0495f,
0x857fcae62d8493a5,0x6f70a4400c562ddb,
0xa6dfbd9fb8e5b88e,0xcb4ccd500f6bb952,
0xd097ad07a71f26b2,0x7e2000a41346a7a7,
0x825ecc24c873782f,0x8ed400668c0c28c8,
0xa2f67f2dfa90563b,0x728900802f0f32fa,
0xcbb41ef979346bca,0x4f2b40a03ad2ffb9,
0xfea126b7d78186bc,0xe2f610c84987bfa8,
0x9f24b832e6b0f436,0xdd9ca7d2df4d7c9,
0xc6ede63fa05d3143,0x91503d1c79720dbb,
0xf8a95fcf88747d94,0x75a44c6397ce912a,
0x9b69dbe1b548ce7c,0xc986afbe3ee11aba,
0xc24452da229b021b,0xfbe85badce996168,
0xf2d56790ab41c2a2,0xfae27299423fb9c3,
0x97c560ba6b0919a5,0xdccd879fc967d41a,
0xbdb6b8e905cb600f,0x5400e987bbc1c920,
0xed246723473e3813,0x290123e9aab23b68,
0x9436c0760c86e30b,0xf9a0b6720aaf6521,
0xb94470938fa89bce,0xf808e40e8d5b3e69,
0xe7958cb87392c2c2,0xb60b1d1230b20e04,
0x90bd77f3483bb9b9,0xb1c6f22b5e6f48c2,
0xb4ecd5f01a4aa828,0x1e38aeb6360b1af3,
0xe2280b6c20dd5232,0x25c6da63c38de1b0,
0x8d590723948a535f,0x579c487e5a38ad0e,
0xb0af48ec79ace837,0x2d835a9df0c6d851,
0xdcdb1b2798182244,0xf8e431456cf88e65,
0x8a08f0f8bf0f156b,0x1b8e9ecb641b58ff,
0xac8b2d36eed2dac5,0xe272467e3d222f3f,
0xd7adf884aa879177,0x5b0ed81dcc6abb0f,
0x86ccbb52ea94baea,0x98e947129fc2b4e9,
0xa87fea27a539e9a5,0x3f2398d747b36224,
0xd29fe4b18e88640e,0x8eec7f0d19a03aad,
0x83a3eeeef9153e89,0x1953cf68300424ac,
0xa48ceaaab75a8e2b,0x5fa8c3423c052dd7,
0xcdb02555653131b6,0x3792f412cb06794d,
0x808e17555f3ebf11,0xe2bbd88bbee40bd0,
0xa0b19d2ab70e6ed6,0x5b6aceaeae9d0ec4,
0xc8de047564d20a8b,0xf245825a5a445275,
0xfb158592be068d2e,0xeed6e2f0f0d56712,
0x9ced737bb6c4183d,0x55464dd69685606b,
0xc428d05aa4751e4c,0xaa97e14c3c26b886,
0xf53304714d9265df,0xd53dd99f4b3066a8,
0x993fe2c6d07b7fab,0xe546a8038efe4029,
0xbf8fdb78849a5f96,0xde98520472bdd033,
0xef73d256a5c0f77c,0x963e66858f6d4440,
0x95a8637627989aad,0xdde7001379a44aa8,
0xbb127c53b17ec159,0x5560c018580d5d52,
0xe9d71b689dde71af,0xaab8f01e6e10b4a6,
0x9226712162ab070d,0xcab3961304ca70e8,
0xb6b00d69bb55c8d1,0x3d607b97c5fd0d22,
0xe45c10c42a2b3b05,0x8cb89a7db77c506a,
0x8eb98a7a9a5b04e3,0x77f3608e92adb242,
0xb267ed1940f1c61c,0x55f038b237591ed3,
0xdf01e85f912e37a3,0x6b6c46dec52f6688,
0x8b61313bbabce2c6,0x2323ac4b3b3da015,
0xae397d8aa96c1b77,0xabec975e0a0d081a,
0xd9c7dced53c72255,0x96e7bd358c904a21,
0x881cea14545c7575,0x7e50d64177da2e54,
0xaa242499697392d2,0xdde50bd1d5d0b9e9,
0xd4ad2dbfc3d07787,0x955e4ec64b44e864,
0x84ec3c97da624ab4,0xbd5af13bef0b113e,
0xa6274bbdd0fadd61,0xecb1ad8aeacdd58e,
0xcfb11ead453994ba,0x67de18eda5814af2,
0x81ceb32c4b43fcf4,0x80eacf948770ced7,
0xa2425ff75e14fc31,0xa1258379a94d028d,
0xcad2f7f5359a3b3e,0x96ee45813a04330,
0xfd87b5f28300ca0d,0x8bca9d6e188853fc,
0x9e74d1b791e07e48,0x775ea264cf55347e,
0xc612062576589dda,0x95364afe032a819e,
0xf79687aed3eec551,0x3a83ddbd83f52205,
0x9abe14cd44753b52,0xc4926a9672793543,
0xc16d9a0095928a27,0x75b7053c0f178294,
0xf1c90080baf72cb1,0x5324c68b12dd6339,
0x971da05074da7bee,0xd3f6fc16ebca5e04,
0xbce5086492111aea,0x88f4bb1ca6bcf585,
0xec1e4a7db69561a5,0x2b31e9e3d06c32e6,
0x9392ee8e921d5d07,0x3aff322e62439fd0,
0xb877aa3236a4b449,0x9befeb9fad487c3,
0xe69594bec44de15b,0x4c2ebe687989a9b4,
0x901d7cf73ab0acd9,0xf9d37014bf60a11,
0xb424dc35095cd80f,0x538484c19ef38c95,
0xe12e13424bb40e13,0x2865a5f206b06fba,
0x8cbccc096f5088cb,0xf93f87b7442e45d4,
0xafebff0bcb24aafe,0xf78f69a51539d749,
0xdbe6fecebdedd5be,0xb573440e5a884d1c,
0x89705f4136b4a597,0x31680a88f8953031,
0xabcc77118461cefc,0xfdc20d2b36ba7c3e,
0xd6bf94d5e57a42bc,0x3d32907604691b4d,
0x8637bd05af6c69b5,0xa63f9a49c2c1b110,
0xa7c5ac471b478423,0xfcf80dc33721d54,
0xd1b71758e219652b,0xd3c36113404ea4a9,
0x83126e978d4fdf3b,0x645a1cac083126ea,
0xa3d70a3d70a3d70a,0x3d70a3d70a3d70a4,
0xcccccccccccccccc,0xcccccccccccccccd,
0x8000000000000000,0x0,
0xa000000000000000,0x0,
0xc800000000000000,0x0,
0xfa00000000000000,0x0,
0x9c40000000000000,0x0,
0xc350000000000000,0x0,
0xf424000000000000,0x0,
0x9896800000000000,0x0,
0xbebc200000000000,0x0,
0xee6b280000000000,0x0,
0x9502f90000000000,0x0,
0xba43b74000000000,0x0,
0xe8d4a51000000000,0x0,
0x9184e72a00000000,0x0,
0xb5e620f480000000,0x0,
0xe35fa931a0000000,0x0,
0x8e1bc9bf04000000,0x0,
0xb1a2bc2ec5000000,0x0,
0xde0b6b3a76400000,0x0,
0x8ac7230489e80000,0x0,
0xad78ebc5ac620000,0x0,
0xd8d726b7177a8000,0x0,
0x878678326eac9000,0x0,
0xa968163f0a57b400,0x0,
0xd3c21bcecceda100,0x0,
0x84595161401484a0,0x0,
0xa56fa5b99019a5c8,0x0,
0xcecb8f27f4200f3a,0x0,
0x813f3978f8940984,0x4000000000000000,
0xa18f07d736b90be5,0x5000000000000000,
0xc9f2c9cd04674ede,0xa400000000000000,
0xfc6f7c4045812296,0x4d00000000000000,
0x9dc5ada82b70b59d,0xf020000000000000,
0xc5371912364ce305,0x6c28000000000000,
0xf684df56c3e01bc6,0xc732000000000000,
0x9a130b963a6c115c,0x3c7f400000000000,
0xc097ce7bc90715b3,0x4b9f100000000000,
0xf0bdc21abb48db20,0x1e86d40000000000,
0x96769950b50d88f4,0x1314448000000000,
0xbc143fa4e250eb31,0x17d955a000000000,
0xeb194f8e1ae525fd,0x5dcfab0800000000,
0x92efd1b8d0cf37be,0x5aa1cae500000000,
0xb7abc627050305ad,0xf14a3d9e40000000,
0xe596b7b0c643c719,0x6d9ccd05d0000000,
0x8f7e32ce7bea5c6f,0xe4820023a2000000,
0xb35dbf821ae4f38b,0xdda2802c8a800000,
0xe0352f62a19e306e,0xd50b2037ad200000,
0x8c213d9da502de45,0x4526f422cc340000,
0xaf298d050e4395d6,0x9670b12b7f410000,
0xdaf3f04651d47b4c,0x3c0cdd765f114000,
0x88d8762bf324cd0f,0xa5880a69fb6ac800,
0xab0e93b6efee0053,0x8eea0d047a457a00,
0xd5d238a4abe98068,0x72a4904598d6d880,
0x85a36366eb71f041,0x47a6da2b7f864750,
0xa70c3c40a64e6c51,0x999090b65f67d924,
0xd0cf4b50cfe20765,0xfff4b4e3f741cf6d,
0x82818f1281ed449f,0xbff8f10e7a8921a4,
0xa321f2d7226895c7,0xaff72d52192b6a0d,
0xcbea6f8ceb02bb39,0x9bf4f8a69f764490,
0xfee50b7025c36a08,0x2f236d04753d5b4,
0x9f4f2726179a2245,0x1d762422c946590,
0xc722f0ef9d80aad6,0x424d3ad2b7b97ef5,
0xf8ebad2b84e0d58b,0xd2e0898765a7deb2,
0x9b934c3b330c8577,0x63cc55f49f88eb2f,
0xc2781f49ffcfa6d5,0x3cbf6b71c76b25fb,
0xf316271c7fc3908a,0x8bef464e3945ef7a,
0x97edd871cfda3a56,0x97758bf0e3cbb5ac,
0xbde94e8e43d0c8ec,0x3d52eeed1cbea317,
0xed63a231d4c4fb27,0x4ca7aaa863ee4bdd,
0x945e455f24fb1cf8,0x8fe8caa93e74ef6a,
0xb975d6b6ee39e436,0xb3e2fd538e122b44,
0xe7d34c64a9c85d44,0x60dbbca87196b616,
0x90e40fbeea1d3a4a,0xbc8955e946fe31cd,
0xb51d13aea4a488dd,0x6babab6398bdbe41,
0xe264589a4dcdab14,0xc696963c7eed2dd1,
0x8d7eb76070a08aec,0xfc1e1de5cf543ca2,
0xb0de65388cc8ada8,0x3b25a55f43294bcb,
0xdd15fe86affad912,0x49ef0eb713f39ebe,
0x8a2dbf142dfcc7ab,0x6e3569326c784337,
0xacb92ed9397bf996,0x49c2c37f07965404,
0xd7e77a8f87daf7fb,0xdc33745ec97be906,
0x86f0ac99b4e8dafd,0x69a028bb3ded71a3,
0xa8acd7c0222311bc,0xc40832ea0d68ce0c,
0xd2d80db02aabd62b,0xf50a3fa490c30190,
0x83c7088e1aab65db,0x792667c6da79e0fa,
0xa4b8cab1a1563f52,0x577001b891185938,
0xcde6fd5e09abcf26,0xed4c0226b55e6f86,
0x80b05e5ac60b6178,0x544f8158315b05b4,
0xa0dc75f1778e39d6,0x696361ae3db1c721,
0xc913936dd571c84c,0x3bc3a19cd1e38e9,
0xfb5878494ace3a5f,0x4ab48a04065c723,
0x9d174b2dcec0e47b,0x62eb0d64283f9c76,
0xc45d1df942711d9a,0x3ba5d0bd324f8394,
0xf5746577930d6500,0xca8f44ec7ee36479,
0x9968bf6abbe85f20,0x7e998b13cf4e1ecb,
0xbfc2ef456ae276e8,0x9e3fedd8c321a67e,
0xefb3ab16c59b14a2,0xc5cfe94ef3ea101e,
0x95d04aee3b80ece5,0xbba1f1d158724a12,
0xbb445da9ca61281f,0x2a8a6e45ae8edc97,
0xea1575143cf97226,0xf52d09d71a3293bd,
0x924d692ca61be758,0x593c2626705f9c56,
0xb6e0c377cfa2e12e,0x6f8b2fb00c77836c,
0xe498f455c38b997a,0xb6dfb9c0f956447,
0x8edf98b59a373fec,0x4724bd4189bd5eac,
0xb2977ee300c50fe7,0x58edec91ec2cb657,
0xdf3d5e9bc0f653e1,0x2f2967b66737e3ed,
0x8b865b215899f46c,0xbd79e0d20082ee74,
0xae67f1e9aec07187,0xecd8590680a3aa11,
0xda01ee641a708de9,0xe80e6f4820cc9495,
0x884134fe908658b2,0x3109058d147fdcdd,
0xaa51823e34a7eede,0xbd4b46f0599fd415,
0xd4e5e2cdc1d1ea96,0x6c9e18ac7007c91a,
0x850fadc09923329e,0x3e2cf6bc604ddb0,
0xa6539930bf6bff45,0x84db8346b786151c,
0xcfe87f7cef46ff16,0xe612641865679a63,
0x81f14fae158c5f6e,0x4fcb7e8f3f60c07e,
0xa26da3999aef7749,0xe3be5e330f38f09d,
0xcb090c8001ab551c,0x5cadf5bfd3072cc5,
0xfdcb4fa002162a63,0x73d9732fc7c8f7f6,
0x9e9f11c4014dda7e,0x2867e7fddcdd9afa,
0xc646d63501a1511d,0xb281e1fd541501b8,
0xf7d88bc24209a565,0x1f225a7ca91a4226,
0x9ae757596946075f,0x3375788de9b06958,
0xc1a12d2fc3978937,0x52d6b1641c83ae,
0xf209787bb47d6b84,0xc0678c5dbd23a49a,
0x9745eb4d50ce6332,0xf840b7ba963646e0,
0xbd176620a501fbff,0xb650e5a93bc3d898,
0xec5d3fa8ce427aff,0xa3e51f138ab4cebe,
0x93ba47c980e98cdf,0xc66f336c36b10137,
0xb8a8d9bbe123f017,0xb80b0047445d4184,
0xe6d3102ad96cec1d,0xa60dc059157491e5,
0x9043ea1ac7e41392,0x87c89837ad68db2f,
0xb454e4a179dd1877,0x29babe4598c311fb,
0xe16a1dc9d8545e94,0xf4296dd6fef3d67a,
0x8ce2529e2734bb1d,0x1899e4a65f58660c,
0xb01ae745b101e9e4,0x5ec05dcff72e7f8f,
0xdc21a1171d42645d,0x76707543f4fa1f73,
0x899504ae72497eba,0x6a06494a791c53a8,
0xabfa45da0edbde69,0x487db9d17636892,
0xd6f8d7509292d603,0x45a9d2845d3c42b6,
0x865b86925b9bc5c2,0xb8a2392ba45a9b2,
0xa7f26836f282b732,0x8e6cac7768d7141e,
0xd1ef0244af2364ff,0x3207d795430cd926,
0x8335616aed761f1f,0x7f44e6bd49e807b8,
0xa402b9c5a8d3a6e7,0x5f16206c9c6209a6,
0xcd036837130890a1,0x36dba887c37a8c0f,
0x802221226be55a64,0xc2494954da2c9789,
0xa02aa96b06deb0fd,0xf2db9baa10b7bd6c,
0xc83553c5c8965d3d,0x6f92829494e5acc7,
0xfa42a8b73abbf48c,0xcb772339ba1f17f9,
0x9c69a97284b578d7,0xff2a760414536efb,
0xc38413cf25e2d70d,0xfef5138519684aba,
0xf46518c2ef5b8cd1,0x7eb258665fc25d69,
0x98bf2f79d5993802,0xef2f773ffbd97a61,
0xbeeefb584aff8603,0xaafb550ffacfd8fa,
0xeeaaba2e5dbf6784,0x95ba2a53f983cf38,
0x952ab45cfa97a0b2,0xdd945a747bf26183,
0xba756174393d88df,0x94f971119aeef9e4,
0xe912b9d1478ceb17,0x7a37cd5601aab85d,
0x91abb422ccb812ee,0xac62e055c10ab33a,
0xb616a12b7fe617aa,0x577b986b314d6009,
0xe39c49765fdf9d94,0xed5a7e85fda0b80b,
0x8e41ade9fbebc27d,0x14588f13be847307,
0xb1d219647ae6b31c,0x596eb2d8ae258fc8,
0xde469fbd99a05fe3,0x6fca5f8ed9aef3bb,
0x8aec23d680043bee,0x25de7bb9480d5854,
0xada72ccc20054ae9,0xaf561aa79a10ae6a,
0xd910f7ff28069da4,0x1b2ba1518094da04,
0x87aa9aff79042286,0x90fb44d2f05d0842,
0xa99541bf57452b28,0x353a1607ac744a53,
0xd3fa922f2d1675f2,0x42889b8997915ce8,
0x847c9b5d7c2e09b7,0x69956135febada11,
0xa59bc234db398c25,0x43fab9837e699095,
0xcf02b2c21207ef2e,0x94f967e45e03f4bb,
0x8161afb94b44f57d,0x1d1be0eebac278f5,
0xa1ba1ba79e1632dc,0x6462d92a69731732,
0xca28a291859bbf93,0x7d7b8f7503cfdcfe,
0xfcb2cb35e702af78,0x5cda735244c3d43e,
0x9defbf01b061adab,0x3a0888136afa64a7,
0xc56baec21c7a1916,0x88aaa1845b8fdd0,
0xf6c69a72a3989f5b,0x8aad549e57273d45,
0x9a3c2087a63f6399,0x36ac54e2f678864b,
0xc0cb28a98fcf3c7f,0x84576a1bb416a7dd,
0xf0fdf2d3f3c30b9f,0x656d44a2a11c51d5,
0x969eb7c47859e743,0x9f644ae5a4b1b325,
0xbc4665b596706114,0x873d5d9f0dde1fee,
0xeb57ff22fc0c7959,0xa90cb506d155a7ea,
0x9316ff75dd87cbd8,0x9a7f12442d588f2,
0xb7dcbf5354e9bece,0xc11ed6d538aeb2f,
0xe5d3ef282a242e81,0x8f1668c8a86da5fa,
0x8fa475791a569d10,0xf96e017d694487bc,
0xb38d92d760ec4455,0x37c981dcc395a9ac,
0xe070f78d3927556a,0x85bbe253f47b1417,
0x8c469ab843b89562,0x93956d7478ccec8e,
0xaf58416654a6babb,0x387ac8d1970027b2,
0xdb2e51bfe9d0696a,0x6997b05fcc0319e,
0x88fcf317f22241e2,0x441fece3bdf81f03,
0xab3c2fddeeaad25a,0xd527e81cad7626c3,
0xd60b3bd56a5586f1,0x8a71e223d8d3b074,
0x85c7056562757456,0xf6872d5667844e49,
0xa738c6bebb12d16c,0xb428f8ac016561db,
0xd106f86e69d785c7,0xe13336d701beba52,
0x82a45b450226b39c,0xecc0024661173473,
0xa34d721642b06084,0x27f002d7f95d0190,
0xcc20ce9bd35c78a5,0x31ec038df7b441f4,
0xff290242c83396ce,0x7e67047175a15271,
0x9f79a169bd203e41,0xf0062c6e984d386,
0xc75809c42c684dd1,0x52c07b78a3e60868,
0xf92e0c3537826145,0xa7709a56ccdf8a82,
0x9bbcc7a142b17ccb,0x88a66076400bb691,
0xc2abf989935ddbfe,0x6acff893d00ea435,
0xf356f7ebf83552fe,0x583f6b8c4124d43,
0x98165af37b2153de,0xc3727a337a8b704a,
0xbe1bf1b059e9a8d6,0x744f18c0592e4c5c,
0xeda2ee1c7064130c,0x1162def06f79df73,
0x9485d4d1c63e8be7,0x8addcb5645ac2ba8,
0xb9a74a0637ce2ee1,0x6d953e2bd7173692,
0xe8111c87c5c1ba99,0xc8fa8db6ccdd0437,
0x910ab1d4db9914a0,0x1d9c9892400a22a2,
0xb54d5e4a127f59c8,0x2503beb6d00cab4b,
0xe2a0b5dc971f303a,0x2e44ae64840fd61d,
0x8da471a9de737e24,0x5ceaecfed289e5d2,
0xb10d8e1456105dad,0x7425a83e872c5f47,
0xdd50f1996b947518,0xd12f124e28f77719,
0x8a5296ffe33cc92f,0x82bd6b70d99aaa6f,
0xace73cbfdc0bfb7b,0x636cc64d1001550b,
0xd8210befd30efa5a,0x3c47f7e05401aa4e,
0x8714a775e3e95c78,0x65acfaec34810a71,
0xa8d9d1535ce3b396,0x7f1839a741a14d0d,
0xd31045a8341ca07c,0x1ede48111209a050,
0x83ea2b892091e44d,0x934aed0aab460432,
0xa4e4b66b68b65d60,0xf81da84d5617853f,
0xce1de40642e3f4b9,0x36251260ab9d668e,
0x80d2ae83e9ce78f3,0xc1d72b7c6b426019,
0xa1075a24e4421730,0xb24cf65b8612f81f,
0xc94930ae1d529cfc,0xdee033f26797b627,
0xfb9b7cd9a4a7443c,0x169840ef017da3b1,
0x9d412e0806e88aa5,0x8e1f289560ee864e,
0xc491798a08a2ad4e,0xf1a6f2bab92a27e2,
0xf5b5d7ec8acb58a2,0xae10af696774b1db,
0x9991a6f3d6bf1765,0xacca6da1e0a8ef29,
0xbff610b0cc6edd3f,0x17fd090a58d32af3,
0xeff394dcff8a948e,0xddfc4b4cef07f5b0,
0x95f83d0a1fb69cd9,0x4abdaf101564f98e,
0xbb764c4ca7a4440f,0x9d6d1ad41abe37f1,
0xea53df5fd18d5513,0x84c86189216dc5ed,
0x92746b9be2f8552c,0x32fd3cf5b4e49bb4,
0xb7118682dbb66a77,0x3fbc8c33221dc2a1,
0xe4d5e82392a40515,0xfabaf3feaa5334a,
0x8f05b1163ba6832d,0x29cb4d87f2a7400e,
0xb2c71d5bca9023f8,0x743e20e9ef511012,
0xdf78e4b2bd342cf6,0x914da9246b255416,
0x8bab8eefb6409c1a,0x1ad089b6c2f7548e,
0xae9672aba3d0c320,0xa184ac2473b529b1,
0xda3c0f568cc4f3e8,0xc9e5d72d90a2741e,
0x8865899617fb1871,0x7e2fa67c7a658892,
0xaa7eebfb9df9de8d,0xddbb901b98feeab7,
0xd51ea6fa85785631,0x552a74227f3ea565,
0x8533285c936b35de,0xd53a88958f87275f,
0xa67ff273b8460356,0x8a892abaf368f137,
0xd01fef10a657842c,0x2d2b7569b0432d85,
0x8213f56a67f6b29b,0x9c3b29620e29fc73,
0xa298f2c501f45f42,0x8349f3ba91b47b8f,
0xcb3f2f7642717713,0x241c70a936219a73,
0xfe0efb53d30dd4d7,0xed238cd383aa0110,
0x9ec95d1463e8a506,0xf4363804324a40aa,
0xc67bb4597ce2ce48,0xb143c6053edcd0d5,
0xf81aa16fdc1b81da,0xdd94b7868e94050a,
0x9b10a4e5e9913128,0xca7cf2b4191c8326,
0xc1d4ce1f63f57d72,0xfd1c2f611f63a3f0,
0xf24a01a73cf2dccf,0xbc633b39673c8cec,
0x976e41088617ca01,0xd5be0503e085d813,
0xbd49d14aa79dbc82,0x4b2d8644d8a74e18,
0xec9c459d51852ba2,0xddf8e7d60ed1219e,
0x93e1ab8252f33b45,0xcabb90e5c942b503,
0xb8da1662e7b00a17,0x3d6a751f3b936243,
0xe7109bfba19c0c9d,0xcc512670a783ad4,
0x906a617d450187e2,0x27fb2b80668b24c5,
0xb484f9dc9641e9da,0xb1f9f660802dedf6,
0xe1a63853bbd26451,0x5e7873f8a0396973,
0x8d07e33455637eb2,0xdb0b487b6423e1e8,
0xb049dc016abc5e5f,0x91ce1a9a3d2cda62,
0xdc5c5301c56b75f7,0x7641a140cc7810fb,
0x89b9b3e11b6329ba,0xa9e904c87fcb0a9d,
0xac2820d9623bf429,0x546345fa9fbdcd44,
0xd732290fbacaf133,0xa97c177947ad4095,
0x867f59a9d4bed6c0,0x49ed8eabcccc485d,
0xa81f301449ee8c70,0x5c68f256bfff5a74,
0xd226fc195c6a2f8c,0x73832eec6fff3111,
0x83585d8fd9c25db7,0xc831fd53c5ff7eab,
0xa42e74f3d032f525,0xba3e7ca8b77f5e55,
0xcd3a1230c43fb26f,0x28ce1bd2e55f35eb,
0x80444b5e7aa7cf85,0x7980d163cf5b81b3,
0xa0555e361951c366,0xd7e105bcc332621f,
0xc86ab5c39fa63440,0x8dd9472bf3fefaa7,
0xfa856334878fc150,0xb14f98f6f0feb951,
0x9c935e00d4b9d8d2,0x6ed1bf9a569f33d3,
0xc3b8358109e84f07,0xa862f80ec4700c8,
0xf4a642e14c6262c8,0xcd27bb612758c0fa,
0x98e7e9cccfbd7dbd,0x8038d51cb897789c,
0xbf21e44003acdd2c,0xe0470a63e6bd56c3,
0xeeea5d5004981478,0x1858ccfce06cac74,
0x95527a5202df0ccb,0xf37801e0c43ebc8,
0xbaa718e68396cffd,0xd30560258f54e6ba,
0xe950df20247c83fd,0x47c6b82ef32a2069,
0x91d28b7416cdd27e,0x4cdc331d57fa5441,
0xb6472e511c81471d,0xe0133fe4adf8e952,
0xe3d8f9e563a198e5,0x58180fddd97723a6,
0x8e679c2f5e44ff8f,0x570f09eaa7ea7648,};
using powers = powers_template<>;
}
#endif
#ifndef FASTFLOAT_DECIMAL_TO_BINARY_H
#define FASTFLOAT_DECIMAL_TO_BINARY_H
#include <cfloat>
#include <cinttypes>
#include <cmath>
#include <cstdint>
#include <cstdlib>
#include <cstring>
namespace fast_float {
// This will compute or rather approximate w * 5**q and return a pair of 64-bit words approximating
// the result, with the "high" part corresponding to the most significant bits and the
// low part corresponding to the least significant bits.
//
template <int bit_precision>
fastfloat_really_inline
value128 compute_product_approximation(int64_t q, uint64_t w) {
const int index = 2 * int(q - powers::smallest_power_of_five);
// For small values of q, e.g., q in [0,27], the answer is always exact because
// The line value128 firstproduct = full_multiplication(w, power_of_five_128[index]);
// gives the exact answer.
value128 firstproduct = full_multiplication(w, powers::power_of_five_128[index]);
static_assert((bit_precision >= 0) && (bit_precision <= 64), " precision should be in (0,64]");
constexpr uint64_t precision_mask = (bit_precision < 64) ?
(uint64_t(0xFFFFFFFFFFFFFFFF) >> bit_precision)
: uint64_t(0xFFFFFFFFFFFFFFFF);
if((firstproduct.high & precision_mask) == precision_mask) { // could further guard with (lower + w < lower)
// regarding the second product, we only need secondproduct.high, but our expectation is that the compiler will optimize this extra work away if needed.
value128 secondproduct = full_multiplication(w, powers::power_of_five_128[index + 1]);
firstproduct.low += secondproduct.high;
if(secondproduct.high > firstproduct.low) {
firstproduct.high++;
}
}
return firstproduct;
}
namespace detail {
/**
* For q in (0,350), we have that
* f = (((152170 + 65536) * q ) >> 16);
* is equal to
* floor(p) + q
* where
* p = log(5**q)/log(2) = q * log(5)/log(2)
*
* For negative values of q in (-400,0), we have that
* f = (((152170 + 65536) * q ) >> 16);
* is equal to
* -ceil(p) + q
* where
* p = log(5**-q)/log(2) = -q * log(5)/log(2)
*/
constexpr fastfloat_really_inline int32_t power(int32_t q) noexcept {
return (((152170 + 65536) * q) >> 16) + 63;
}
} // namespace detail
// create an adjusted mantissa, biased by the invalid power2
// for significant digits already multiplied by 10 ** q.
template <typename binary>
fastfloat_really_inline
adjusted_mantissa compute_error_scaled(int64_t q, uint64_t w, int lz) noexcept {
int hilz = int(w >> 63) ^ 1;
adjusted_mantissa answer;
answer.mantissa = w << hilz;
int bias = binary::mantissa_explicit_bits() - binary::minimum_exponent();
answer.power2 = int32_t(detail::power(int32_t(q)) + bias - hilz - lz - 62 + invalid_am_bias);
return answer;
}
// w * 10 ** q, without rounding the representation up.
// the power2 in the exponent will be adjusted by invalid_am_bias.
template <typename binary>
fastfloat_really_inline
adjusted_mantissa compute_error(int64_t q, uint64_t w) noexcept {
int lz = leading_zeroes(w);
w <<= lz;
value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
return compute_error_scaled<binary>(q, product.high, lz);
}
// w * 10 ** q
// The returned value should be a valid ieee64 number that simply need to be packed.
// However, in some very rare cases, the computation will fail. In such cases, we
// return an adjusted_mantissa with a negative power of 2: the caller should recompute
// in such cases.
template <typename binary>
fastfloat_really_inline
adjusted_mantissa compute_float(int64_t q, uint64_t w) noexcept {
adjusted_mantissa answer;
if ((w == 0) || (q < binary::smallest_power_of_ten())) {
answer.power2 = 0;
answer.mantissa = 0;
// result should be zero
return answer;
}
if (q > binary::largest_power_of_ten()) {
// we want to get infinity:
answer.power2 = binary::infinite_power();
answer.mantissa = 0;
return answer;
}
// At this point in time q is in [powers::smallest_power_of_five, powers::largest_power_of_five].
// We want the most significant bit of i to be 1. Shift if needed.
int lz = leading_zeroes(w);
w <<= lz;
// The required precision is binary::mantissa_explicit_bits() + 3 because
// 1. We need the implicit bit
// 2. We need an extra bit for rounding purposes
// 3. We might lose a bit due to the "upperbit" routine (result too small, requiring a shift)
value128 product = compute_product_approximation<binary::mantissa_explicit_bits() + 3>(q, w);
if(product.low == 0xFFFFFFFFFFFFFFFF) { // could guard it further
// In some very rare cases, this could happen, in which case we might need a more accurate
// computation that what we can provide cheaply. This is very, very unlikely.
//
const bool inside_safe_exponent = (q >= -27) && (q <= 55); // always good because 5**q <2**128 when q>=0,
// and otherwise, for q<0, we have 5**-q<2**64 and the 128-bit reciprocal allows for exact computation.
if(!inside_safe_exponent) {
return compute_error_scaled<binary>(q, product.high, lz);
}
}
// The "compute_product_approximation" function can be slightly slower than a branchless approach:
// value128 product = compute_product(q, w);
// but in practice, we can win big with the compute_product_approximation if its additional branch
// is easily predicted. Which is best is data specific.
int upperbit = int(product.high >> 63);
answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
answer.power2 = int32_t(detail::power(int32_t(q)) + upperbit - lz - binary::minimum_exponent());
if (answer.power2 <= 0) { // we have a subnormal?
// Here have that answer.power2 <= 0 so -answer.power2 >= 0
if(-answer.power2 + 1 >= 64) { // if we have more than 64 bits below the minimum exponent, you have a zero for sure.
answer.power2 = 0;
answer.mantissa = 0;
// result should be zero
return answer;
}
// next line is safe because -answer.power2 + 1 < 64
answer.mantissa >>= -answer.power2 + 1;
// Thankfully, we can't have both "round-to-even" and subnormals because
// "round-to-even" only occurs for powers close to 0.
answer.mantissa += (answer.mantissa & 1); // round up
answer.mantissa >>= 1;
// There is a weird scenario where we don't have a subnormal but just.
// Suppose we start with 2.2250738585072013e-308, we end up
// with 0x3fffffffffffff x 2^-1023-53 which is technically subnormal
// whereas 0x40000000000000 x 2^-1023-53 is normal. Now, we need to round
// up 0x3fffffffffffff x 2^-1023-53 and once we do, we are no longer
// subnormal, but we can only know this after rounding.
// So we only declare a subnormal if we are smaller than the threshold.
answer.power2 = (answer.mantissa < (uint64_t(1) << binary::mantissa_explicit_bits())) ? 0 : 1;
return answer;
}
// usually, we round *up*, but if we fall right in between and and we have an
// even basis, we need to round down
// We are only concerned with the cases where 5**q fits in single 64-bit word.
if ((product.low <= 1) && (q >= binary::min_exponent_round_to_even()) && (q <= binary::max_exponent_round_to_even()) &&
((answer.mantissa & 3) == 1) ) { // we may fall between two floats!
// To be in-between two floats we need that in doing
// answer.mantissa = product.high >> (upperbit + 64 - binary::mantissa_explicit_bits() - 3);
// ... we dropped out only zeroes. But if this happened, then we can go back!!!
if((answer.mantissa << (upperbit + 64 - binary::mantissa_explicit_bits() - 3)) == product.high) {
answer.mantissa &= ~uint64_t(1); // flip it so that we do not round up
}
}
answer.mantissa += (answer.mantissa & 1); // round up
answer.mantissa >>= 1;
if (answer.mantissa >= (uint64_t(2) << binary::mantissa_explicit_bits())) {
answer.mantissa = (uint64_t(1) << binary::mantissa_explicit_bits());
answer.power2++; // undo previous addition
}
answer.mantissa &= ~(uint64_t(1) << binary::mantissa_explicit_bits());
if (answer.power2 >= binary::infinite_power()) { // infinity
answer.power2 = binary::infinite_power();
answer.mantissa = 0;
}
return answer;
}
} // namespace fast_float
#endif
#ifndef FASTFLOAT_BIGINT_H
#define FASTFLOAT_BIGINT_H
#include <algorithm>
#include <cstdint>
#include <climits>
#include <cstring>
namespace fast_float {
// the limb width: we want efficient multiplication of double the bits in
// limb, or for 64-bit limbs, at least 64-bit multiplication where we can
// extract the high and low parts efficiently. this is every 64-bit
// architecture except for sparc, which emulates 128-bit multiplication.
// we might have platforms where `CHAR_BIT` is not 8, so let's avoid
// doing `8 * sizeof(limb)`.
#if defined(FASTFLOAT_64BIT) && !defined(__sparc)
#define FASTFLOAT_64BIT_LIMB
typedef uint64_t limb;
constexpr size_t limb_bits = 64;
#else
#define FASTFLOAT_32BIT_LIMB
typedef uint32_t limb;
constexpr size_t limb_bits = 32;
#endif
typedef span<limb> limb_span;
// number of bits in a bigint. this needs to be at least the number
// of bits required to store the largest bigint, which is
// `log2(10**(digits + max_exp))`, or `log2(10**(767 + 342))`, or
// ~3600 bits, so we round to 4000.
constexpr size_t bigint_bits = 4000;
constexpr size_t bigint_limbs = bigint_bits / limb_bits;
// vector-like type that is allocated on the stack. the entire
// buffer is pre-allocated, and only the length changes.
template <uint16_t size>
struct stackvec {
limb data[size];
// we never need more than 150 limbs
uint16_t length{0};
stackvec() = default;
stackvec(const stackvec &) = delete;
stackvec &operator=(const stackvec &) = delete;
stackvec(stackvec &&) = delete;
stackvec &operator=(stackvec &&other) = delete;
// create stack vector from existing limb span.
stackvec(limb_span s) {
FASTFLOAT_ASSERT(try_extend(s));
}
limb& operator[](size_t index) noexcept {
FASTFLOAT_DEBUG_ASSERT(index < length);
return data[index];
}
const limb& operator[](size_t index) const noexcept {
FASTFLOAT_DEBUG_ASSERT(index < length);
return data[index];
}
// index from the end of the container
const limb& rindex(size_t index) const noexcept {
FASTFLOAT_DEBUG_ASSERT(index < length);
size_t rindex = length - index - 1;
return data[rindex];
}
// set the length, without bounds checking.
void set_len(size_t len) noexcept {
length = uint16_t(len);
}
constexpr size_t len() const noexcept {
return length;
}
constexpr bool is_empty() const noexcept {
return length == 0;
}
constexpr size_t capacity() const noexcept {
return size;
}
// append item to vector, without bounds checking
void push_unchecked(limb value) noexcept {
data[length] = value;
length++;
}
// append item to vector, returning if item was added
bool try_push(limb value) noexcept {
if (len() < capacity()) {
push_unchecked(value);
return true;
} else {
return false;
}
}
// add items to the vector, from a span, without bounds checking
void extend_unchecked(limb_span s) noexcept {
limb* ptr = data + length;
::memcpy((void*)ptr, (const void*)s.ptr, sizeof(limb) * s.len());
set_len(len() + s.len());
}
// try to add items to the vector, returning if items were added
bool try_extend(limb_span s) noexcept {
if (len() + s.len() <= capacity()) {
extend_unchecked(s);
return true;
} else {
return false;
}
}
// resize the vector, without bounds checking
// if the new size is longer than the vector, assign value to each
// appended item.
void resize_unchecked(size_t new_len, limb value) noexcept {
if (new_len > len()) {
size_t count = new_len - len();
limb* first = data + len();
limb* last = first + count;
::std::fill(first, last, value);
set_len(new_len);
} else {
set_len(new_len);
}
}
// try to resize the vector, returning if the vector was resized.
bool try_resize(size_t new_len, limb value) noexcept {
if (new_len > capacity()) {
return false;
} else {
resize_unchecked(new_len, value);
return true;
}
}
// check if any limbs are non-zero after the given index.
// this needs to be done in reverse order, since the index
// is relative to the most significant limbs.
bool nonzero(size_t index) const noexcept {
while (index < len()) {
if (rindex(index) != 0) {
return true;
}
index++;
}
return false;
}
// normalize the big integer, so most-significant zero limbs are removed.
void normalize() noexcept {
while (len() > 0 && rindex(0) == 0) {
length--;
}
}
};
fastfloat_really_inline
uint64_t empty_hi64(bool& truncated) noexcept {
truncated = false;
return 0;
}
fastfloat_really_inline
uint64_t uint64_hi64(uint64_t r0, bool& truncated) noexcept {
truncated = false;
int shl = leading_zeroes(r0);
return r0 << shl;
}
fastfloat_really_inline
uint64_t uint64_hi64(uint64_t r0, uint64_t r1, bool& truncated) noexcept {
int shl = leading_zeroes(r0);
if (shl == 0) {
truncated = r1 != 0;
return r0;
} else {
int shr = 64 - shl;
truncated = (r1 << shl) != 0;
return (r0 << shl) | (r1 >> shr);
}
}
fastfloat_really_inline
uint64_t uint32_hi64(uint32_t r0, bool& truncated) noexcept {
return uint64_hi64(r0, truncated);
}
fastfloat_really_inline
uint64_t uint32_hi64(uint32_t r0, uint32_t r1, bool& truncated) noexcept {
uint64_t x0 = r0;
uint64_t x1 = r1;
return uint64_hi64((x0 << 32) | x1, truncated);
}
fastfloat_really_inline
uint64_t uint32_hi64(uint32_t r0, uint32_t r1, uint32_t r2, bool& truncated) noexcept {
uint64_t x0 = r0;
uint64_t x1 = r1;
uint64_t x2 = r2;
return uint64_hi64(x0, (x1 << 32) | x2, truncated);
}
// add two small integers, checking for overflow.
// we want an efficient operation. for msvc, where
// we don't have built-in intrinsics, this is still
// pretty fast.
fastfloat_really_inline
limb scalar_add(limb x, limb y, bool& overflow) noexcept {
limb z;
// gcc and clang
#if defined(__has_builtin)
#if __has_builtin(__builtin_add_overflow)
overflow = __builtin_add_overflow(x, y, &z);
return z;
#endif
#endif
// generic, this still optimizes correctly on MSVC.
z = x + y;
overflow = z < x;
return z;
}
// multiply two small integers, getting both the high and low bits.
fastfloat_really_inline
limb scalar_mul(limb x, limb y, limb& carry) noexcept {
#ifdef FASTFLOAT_64BIT_LIMB
#if defined(__SIZEOF_INT128__)
// GCC and clang both define it as an extension.
__uint128_t z = __uint128_t(x) * __uint128_t(y) + __uint128_t(carry);
carry = limb(z >> limb_bits);
return limb(z);
#else
// fallback, no native 128-bit integer multiplication with carry.
// on msvc, this optimizes identically, somehow.
value128 z = full_multiplication(x, y);
bool overflow;
z.low = scalar_add(z.low, carry, overflow);
z.high += uint64_t(overflow); // cannot overflow
carry = z.high;
return z.low;
#endif
#else
uint64_t z = uint64_t(x) * uint64_t(y) + uint64_t(carry);
carry = limb(z >> limb_bits);
return limb(z);
#endif
}
// add scalar value to bigint starting from offset.
// used in grade school multiplication
template <uint16_t size>
inline bool small_add_from(stackvec<size>& vec, limb y, size_t start) noexcept {
size_t index = start;
limb carry = y;
bool overflow;
while (carry != 0 && index < vec.len()) {
vec[index] = scalar_add(vec[index], carry, overflow);
carry = limb(overflow);
index += 1;
}
if (carry != 0) {
FASTFLOAT_TRY(vec.try_push(carry));
}
return true;
}
// add scalar value to bigint.
template <uint16_t size>
fastfloat_really_inline bool small_add(stackvec<size>& vec, limb y) noexcept {
return small_add_from(vec, y, 0);
}
// multiply bigint by scalar value.
template <uint16_t size>
inline bool small_mul(stackvec<size>& vec, limb y) noexcept {
limb carry = 0;
for (size_t index = 0; index < vec.len(); index++) {
vec[index] = scalar_mul(vec[index], y, carry);
}
if (carry != 0) {
FASTFLOAT_TRY(vec.try_push(carry));
}
return true;
}
// add bigint to bigint starting from index.
// used in grade school multiplication
template <uint16_t size>
bool large_add_from(stackvec<size>& x, limb_span y, size_t start) noexcept {
// the effective x buffer is from `xstart..x.len()`, so exit early
// if we can't get that current range.
if (x.len() < start || y.len() > x.len() - start) {
FASTFLOAT_TRY(x.try_resize(y.len() + start, 0));
}
bool carry = false;
for (size_t index = 0; index < y.len(); index++) {
limb xi = x[index + start];
limb yi = y[index];
bool c1 = false;
bool c2 = false;
xi = scalar_add(xi, yi, c1);
if (carry) {
xi = scalar_add(xi, 1, c2);
}
x[index + start] = xi;
carry = c1 | c2;
}
// handle overflow
if (carry) {
FASTFLOAT_TRY(small_add_from(x, 1, y.len() + start));
}
return true;
}
// add bigint to bigint.
template <uint16_t size>
fastfloat_really_inline bool large_add_from(stackvec<size>& x, limb_span y) noexcept {
return large_add_from(x, y, 0);
}
// grade-school multiplication algorithm
template <uint16_t size>
bool long_mul(stackvec<size>& x, limb_span y) noexcept {
limb_span xs = limb_span(x.data, x.len());
stackvec<size> z(xs);
limb_span zs = limb_span(z.data, z.len());
if (y.len() != 0) {
limb y0 = y[0];
FASTFLOAT_TRY(small_mul(x, y0));
for (size_t index = 1; index < y.len(); index++) {
limb yi = y[index];
stackvec<size> zi;
if (yi != 0) {
// re-use the same buffer throughout
zi.set_len(0);
FASTFLOAT_TRY(zi.try_extend(zs));
FASTFLOAT_TRY(small_mul(zi, yi));
limb_span zis = limb_span(zi.data, zi.len());
FASTFLOAT_TRY(large_add_from(x, zis, index));
}
}
}
x.normalize();
return true;
}
// grade-school multiplication algorithm
template <uint16_t size>
bool large_mul(stackvec<size>& x, limb_span y) noexcept {
if (y.len() == 1) {
FASTFLOAT_TRY(small_mul(x, y[0]));
} else {
FASTFLOAT_TRY(long_mul(x, y));
}
return true;
}
// big integer type. implements a small subset of big integer
// arithmetic, using simple algorithms since asymptotically
// faster algorithms are slower for a small number of limbs.
// all operations assume the big-integer is normalized.
struct bigint {
// storage of the limbs, in little-endian order.
stackvec<bigint_limbs> vec;
bigint(): vec() {}
bigint(const bigint &) = delete;
bigint &operator=(const bigint &) = delete;
bigint(bigint &&) = delete;
bigint &operator=(bigint &&other) = delete;
bigint(uint64_t value): vec() {
#ifdef FASTFLOAT_64BIT_LIMB
vec.push_unchecked(value);
#else
vec.push_unchecked(uint32_t(value));
vec.push_unchecked(uint32_t(value >> 32));
#endif
vec.normalize();
}
// get the high 64 bits from the vector, and if bits were truncated.
// this is to get the significant digits for the float.
uint64_t hi64(bool& truncated) const noexcept {
#ifdef FASTFLOAT_64BIT_LIMB
if (vec.len() == 0) {
return empty_hi64(truncated);
} else if (vec.len() == 1) {
return uint64_hi64(vec.rindex(0), truncated);
} else {
uint64_t result = uint64_hi64(vec.rindex(0), vec.rindex(1), truncated);
truncated |= vec.nonzero(2);
return result;
}
#else
if (vec.len() == 0) {
return empty_hi64(truncated);
} else if (vec.len() == 1) {
return uint32_hi64(vec.rindex(0), truncated);
} else if (vec.len() == 2) {
return uint32_hi64(vec.rindex(0), vec.rindex(1), truncated);
} else {
uint64_t result = uint32_hi64(vec.rindex(0), vec.rindex(1), vec.rindex(2), truncated);
truncated |= vec.nonzero(3);
return result;
}
#endif
}
// compare two big integers, returning the large value.
// assumes both are normalized. if the return value is
// negative, other is larger, if the return value is
// positive, this is larger, otherwise they are equal.
// the limbs are stored in little-endian order, so we
// must compare the limbs in ever order.
int compare(const bigint& other) const noexcept {
if (vec.len() > other.vec.len()) {
return 1;
} else if (vec.len() < other.vec.len()) {
return -1;
} else {
for (size_t index = vec.len(); index > 0; index--) {
limb xi = vec[index - 1];
limb yi = other.vec[index - 1];
if (xi > yi) {
return 1;
} else if (xi < yi) {
return -1;
}
}
return 0;
}
}
// shift left each limb n bits, carrying over to the new limb
// returns true if we were able to shift all the digits.
bool shl_bits(size_t n) noexcept {
// Internally, for each item, we shift left by n, and add the previous
// right shifted limb-bits.
// For example, we transform (for u8) shifted left 2, to:
// b10100100 b01000010
// b10 b10010001 b00001000
FASTFLOAT_DEBUG_ASSERT(n != 0);
FASTFLOAT_DEBUG_ASSERT(n < sizeof(limb) * 8);
size_t shl = n;
size_t shr = limb_bits - shl;
limb prev = 0;
for (size_t index = 0; index < vec.len(); index++) {
limb xi = vec[index];
vec[index] = (xi << shl) | (prev >> shr);
prev = xi;
}
limb carry = prev >> shr;
if (carry != 0) {
return vec.try_push(carry);
}
return true;
}
// move the limbs left by `n` limbs.
bool shl_limbs(size_t n) noexcept {
FASTFLOAT_DEBUG_ASSERT(n != 0);
if (n + vec.len() > vec.capacity()) {
return false;
} else if (!vec.is_empty()) {
// move limbs
limb* dst = vec.data + n;
const limb* src = vec.data;
::memmove(dst, src, sizeof(limb) * vec.len());
// fill in empty limbs
limb* first = vec.data;
limb* last = first + n;
::std::fill(first, last, 0);
vec.set_len(n + vec.len());
return true;
} else {
return true;
}
}
// move the limbs left by `n` bits.
bool shl(size_t n) noexcept {
size_t rem = n % limb_bits;
size_t div = n / limb_bits;
if (rem != 0) {
FASTFLOAT_TRY(shl_bits(rem));
}
if (div != 0) {
FASTFLOAT_TRY(shl_limbs(div));
}
return true;
}
// get the number of leading zeros in the bigint.
int ctlz() const noexcept {
if (vec.is_empty()) {
return 0;
} else {
#ifdef FASTFLOAT_64BIT_LIMB
return leading_zeroes(vec.rindex(0));
#else
// no use defining a specialized leading_zeroes for a 32-bit type.
uint64_t r0 = vec.rindex(0);
return leading_zeroes(r0 << 32);
#endif
}
}
// get the number of bits in the bigint.
int bit_length() const noexcept {
int lz = ctlz();
return int(limb_bits * vec.len()) - lz;
}
bool mul(limb y) noexcept {
return small_mul(vec, y);
}
bool add(limb y) noexcept {
return small_add(vec, y);
}
// multiply as if by 2 raised to a power.
bool pow2(uint32_t exp) noexcept {
return shl(exp);
}
// multiply as if by 5 raised to a power.
bool pow5(uint32_t exp) noexcept {
// multiply by a power of 5
static constexpr uint32_t large_step = 135;
static constexpr uint64_t small_power_of_5[] = {
1UL, 5UL, 25UL, 125UL, 625UL, 3125UL, 15625UL, 78125UL, 390625UL,
1953125UL, 9765625UL, 48828125UL, 244140625UL, 1220703125UL,
6103515625UL, 30517578125UL, 152587890625UL, 762939453125UL,
3814697265625UL, 19073486328125UL, 95367431640625UL, 476837158203125UL,
2384185791015625UL, 11920928955078125UL, 59604644775390625UL,
298023223876953125UL, 1490116119384765625UL, 7450580596923828125UL,
};
#ifdef FASTFLOAT_64BIT_LIMB
constexpr static limb large_power_of_5[] = {
1414648277510068013UL, 9180637584431281687UL, 4539964771860779200UL,
10482974169319127550UL, 198276706040285095UL};
#else
constexpr static limb large_power_of_5[] = {
4279965485U, 329373468U, 4020270615U, 2137533757U, 4287402176U,
1057042919U, 1071430142U, 2440757623U, 381945767U, 46164893U};
#endif
size_t large_length = sizeof(large_power_of_5) / sizeof(limb);
limb_span large = limb_span(large_power_of_5, large_length);
while (exp >= large_step) {
FASTFLOAT_TRY(large_mul(vec, large));
exp -= large_step;
}
#ifdef FASTFLOAT_64BIT_LIMB
uint32_t small_step = 27;
limb max_native = 7450580596923828125UL;
#else
uint32_t small_step = 13;
limb max_native = 1220703125U;
#endif
while (exp >= small_step) {
FASTFLOAT_TRY(small_mul(vec, max_native));
exp -= small_step;
}
if (exp != 0) {
FASTFLOAT_TRY(small_mul(vec, limb(small_power_of_5[exp])));
}
return true;
}
// multiply as if by 10 raised to a power.
bool pow10(uint32_t exp) noexcept {
FASTFLOAT_TRY(pow5(exp));
return pow2(exp);
}
};
} // namespace fast_float
#endif
#ifndef FASTFLOAT_ASCII_NUMBER_H
#define FASTFLOAT_ASCII_NUMBER_H
#include <cctype>
#include <cstdint>
#include <cstring>
#include <iterator>
namespace fast_float {
// Next function can be micro-optimized, but compilers are entirely
// able to optimize it well.
fastfloat_really_inline bool is_integer(char c) noexcept { return c >= '0' && c <= '9'; }
fastfloat_really_inline uint64_t byteswap(uint64_t val) {
return (val & 0xFF00000000000000) >> 56
| (val & 0x00FF000000000000) >> 40
| (val & 0x0000FF0000000000) >> 24
| (val & 0x000000FF00000000) >> 8
| (val & 0x00000000FF000000) << 8
| (val & 0x0000000000FF0000) << 24
| (val & 0x000000000000FF00) << 40
| (val & 0x00000000000000FF) << 56;
}
fastfloat_really_inline uint64_t read_u64(const char *chars) {
uint64_t val;
::memcpy(&val, chars, sizeof(uint64_t));
#if FASTFLOAT_IS_BIG_ENDIAN == 1
// Need to read as-if the number was in little-endian order.
val = byteswap(val);
#endif
return val;
}
fastfloat_really_inline void write_u64(uint8_t *chars, uint64_t val) {
#if FASTFLOAT_IS_BIG_ENDIAN == 1
// Need to read as-if the number was in little-endian order.
val = byteswap(val);
#endif
::memcpy(chars, &val, sizeof(uint64_t));
}
// credit @aqrit
fastfloat_really_inline uint32_t parse_eight_digits_unrolled(uint64_t val) {
const uint64_t mask = 0x000000FF000000FF;
const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32)
const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32)
val -= 0x3030303030303030;
val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8;
val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32;
return uint32_t(val);
}
fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept {
return parse_eight_digits_unrolled(read_u64(chars));
}
// credit @aqrit
fastfloat_really_inline bool is_made_of_eight_digits_fast(uint64_t val) noexcept {
return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) &
0x8080808080808080));
}
fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept {
return is_made_of_eight_digits_fast(read_u64(chars));
}
typedef span<const char> byte_span;
struct parsed_number_string {
int64_t exponent{0};
uint64_t mantissa{0};
const char *lastmatch{nullptr};
bool negative{false};
bool valid{false};
bool too_many_digits{false};
// contains the range of the significant digits
byte_span integer{}; // non-nullable
byte_span fraction{}; // nullable
};
// Assuming that you use no more than 19 digits, this will
// parse an ASCII string.
fastfloat_really_inline
parsed_number_string parse_number_string(const char *p, const char *pend, parse_options options) noexcept {
const chars_format fmt = options.format;
const char decimal_point = options.decimal_point;
parsed_number_string answer;
answer.valid = false;
answer.too_many_digits = false;
answer.negative = (*p == '-');
if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here
++p;
if (p == pend) {
return answer;
}
if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot
return answer;
}
}
const char *const start_digits = p;
uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad)
while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
p += 8;
}
while ((p != pend) && is_integer(*p)) {
// a multiplication by 10 is cheaper than an arbitrary integer
// multiplication
i = 10 * i +
uint64_t(*p - '0'); // might overflow, we will handle the overflow later
++p;
}
const char *const end_of_integer_part = p;
int64_t digit_count = int64_t(end_of_integer_part - start_digits);
answer.integer = byte_span(start_digits, size_t(digit_count));
int64_t exponent = 0;
if ((p != pend) && (*p == decimal_point)) {
++p;
const char* before = p;
// can occur at most twice without overflowing, but let it occur more, since
// for integers with many digits, digit parsing is the primary bottleneck.
while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) {
i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok
p += 8;
}
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - '0');
++p;
i = i * 10 + digit; // in rare cases, this will overflow, but that's ok
}
exponent = before - p;
answer.fraction = byte_span(before, size_t(p - before));
digit_count -= exponent;
}
// we must have encountered at least one integer!
if (digit_count == 0) {
return answer;
}
int64_t exp_number = 0; // explicit exponential part
if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) {
const char * location_of_e = p;
++p;
bool neg_exp = false;
if ((p != pend) && ('-' == *p)) {
neg_exp = true;
++p;
} else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1)
++p;
}
if ((p == pend) || !is_integer(*p)) {
if(!(fmt & chars_format::fixed)) {
// We are in error.
return answer;
}
// Otherwise, we will be ignoring the 'e'.
p = location_of_e;
} else {
while ((p != pend) && is_integer(*p)) {
uint8_t digit = uint8_t(*p - '0');
if (exp_number < 0x10000000) {
exp_number = 10 * exp_number + digit;
}
++p;
}
if(neg_exp) { exp_number = - exp_number; }
exponent += exp_number;
}
} else {
// If it scientific and not fixed, we have to bail out.
if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; }
}
answer.lastmatch = p;
answer.valid = true;
// If we frequently had to deal with long strings of digits,
// we could extend our code by using a 128-bit integer instead
// of a 64-bit integer. However, this is uncommon.
//
// We can deal with up to 19 digits.
if (digit_count > 19) { // this is uncommon
// It is possible that the integer had an overflow.
// We have to handle the case where we have 0.0000somenumber.
// We need to be mindful of the case where we only have zeroes...
// E.g., 0.000000000...000.
const char *start = start_digits;
while ((start != pend) && (*start == '0' || *start == decimal_point)) {
if(*start == '0') { digit_count --; }
start++;
}
if (digit_count > 19) {
answer.too_many_digits = true;
// Let us start again, this time, avoiding overflows.
// We don't need to check if is_integer, since we use the
// pre-tokenized spans from above.
i = 0;
p = answer.integer.ptr;
const char* int_end = p + answer.integer.len();
const uint64_t minimal_nineteen_digit_integer{1000000000000000000};
while((i < minimal_nineteen_digit_integer) && (p != int_end)) {
i = i * 10 + uint64_t(*p - '0');
++p;
}
if (i >= minimal_nineteen_digit_integer) { // We have a big integers
exponent = end_of_integer_part - p + exp_number;
} else { // We have a value with a fractional component.
p = answer.fraction.ptr;
const char* frac_end = p + answer.fraction.len();
while((i < minimal_nineteen_digit_integer) && (p != frac_end)) {
i = i * 10 + uint64_t(*p - '0');
++p;
}
exponent = answer.fraction.ptr - p + exp_number;
}
// We have now corrected both exponent and i, to a truncated value
}
}
answer.exponent = exponent;
answer.mantissa = i;
return answer;
}
} // namespace fast_float
#endif
#ifndef FASTFLOAT_DIGIT_COMPARISON_H
#define FASTFLOAT_DIGIT_COMPARISON_H
#include <algorithm>
#include <cstdint>
#include <cstring>
#include <iterator>
namespace fast_float {
// 1e0 to 1e19
constexpr static uint64_t powers_of_ten_uint64[] = {
1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL,
1000000000UL, 10000000000UL, 100000000000UL, 1000000000000UL, 10000000000000UL,
100000000000000UL, 1000000000000000UL, 10000000000000000UL, 100000000000000000UL,
1000000000000000000UL, 10000000000000000000UL};
// calculate the exponent, in scientific notation, of the number.
// this algorithm is not even close to optimized, but it has no practical
// effect on performance: in order to have a faster algorithm, we'd need
// to slow down performance for faster algorithms, and this is still fast.
fastfloat_really_inline int32_t scientific_exponent(parsed_number_string& num) noexcept {
uint64_t mantissa = num.mantissa;
int32_t exponent = int32_t(num.exponent);
while (mantissa >= 10000) {
mantissa /= 10000;
exponent += 4;
}
while (mantissa >= 100) {
mantissa /= 100;
exponent += 2;
}
while (mantissa >= 10) {
mantissa /= 10;
exponent += 1;
}
return exponent;
}
// this converts a native floating-point number to an extended-precision float.
template <typename T>
fastfloat_really_inline adjusted_mantissa to_extended(T value) noexcept {
adjusted_mantissa am;
int32_t bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
if (std::is_same<T, float>::value) {
constexpr uint32_t exponent_mask = 0x7F800000;
constexpr uint32_t mantissa_mask = 0x007FFFFF;
constexpr uint64_t hidden_bit_mask = 0x00800000;
uint32_t bits;
::memcpy(&bits, &value, sizeof(T));
if ((bits & exponent_mask) == 0) {
// denormal
am.power2 = 1 - bias;
am.mantissa = bits & mantissa_mask;
} else {
// normal
am.power2 = int32_t((bits & exponent_mask) >> binary_format<T>::mantissa_explicit_bits());
am.power2 -= bias;
am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
}
} else {
constexpr uint64_t exponent_mask = 0x7FF0000000000000;
constexpr uint64_t mantissa_mask = 0x000FFFFFFFFFFFFF;
constexpr uint64_t hidden_bit_mask = 0x0010000000000000;
uint64_t bits;
::memcpy(&bits, &value, sizeof(T));
if ((bits & exponent_mask) == 0) {
// denormal
am.power2 = 1 - bias;
am.mantissa = bits & mantissa_mask;
} else {
// normal
am.power2 = int32_t((bits & exponent_mask) >> binary_format<T>::mantissa_explicit_bits());
am.power2 -= bias;
am.mantissa = (bits & mantissa_mask) | hidden_bit_mask;
}
}
return am;
}
// get the extended precision value of the halfway point between b and b+u.
// we are given a native float that represents b, so we need to adjust it
// halfway between b and b+u.
template <typename T>
fastfloat_really_inline adjusted_mantissa to_extended_halfway(T value) noexcept {
adjusted_mantissa am = to_extended(value);
am.mantissa <<= 1;
am.mantissa += 1;
am.power2 -= 1;
return am;
}
// round an extended-precision float to the nearest machine float.
template <typename T, typename callback>
fastfloat_really_inline void round(adjusted_mantissa& am, callback cb) noexcept {
int32_t mantissa_shift = 64 - binary_format<T>::mantissa_explicit_bits() - 1;
if (-am.power2 >= mantissa_shift) {
// have a denormal float
int32_t shift = -am.power2 + 1;
cb(am, std::min(shift, 64));
// check for round-up: if rounding-nearest carried us to the hidden bit.
am.power2 = (am.mantissa < (uint64_t(1) << binary_format<T>::mantissa_explicit_bits())) ? 0 : 1;
return;
}
// have a normal float, use the default shift.
cb(am, mantissa_shift);
// check for carry
if (am.mantissa >= (uint64_t(2) << binary_format<T>::mantissa_explicit_bits())) {
am.mantissa = (uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
am.power2++;
}
// check for infinite: we could have carried to an infinite power
am.mantissa &= ~(uint64_t(1) << binary_format<T>::mantissa_explicit_bits());
if (am.power2 >= binary_format<T>::infinite_power()) {
am.power2 = binary_format<T>::infinite_power();
am.mantissa = 0;
}
}
template <typename callback>
fastfloat_really_inline
void round_nearest_tie_even(adjusted_mantissa& am, int32_t shift, callback cb) noexcept {
uint64_t mask;
uint64_t halfway;
if (shift == 64) {
mask = UINT64_MAX;
} else {
mask = (uint64_t(1) << shift) - 1;
}
if (shift == 0) {
halfway = 0;
} else {
halfway = uint64_t(1) << (shift - 1);
}
uint64_t truncated_bits = am.mantissa & mask;
uint64_t is_above = truncated_bits > halfway;
uint64_t is_halfway = truncated_bits == halfway;
// shift digits into position
if (shift == 64) {
am.mantissa = 0;
} else {
am.mantissa >>= shift;
}
am.power2 += shift;
bool is_odd = (am.mantissa & 1) == 1;
am.mantissa += uint64_t(cb(is_odd, is_halfway, is_above));
}
fastfloat_really_inline void round_down(adjusted_mantissa& am, int32_t shift) noexcept {
if (shift == 64) {
am.mantissa = 0;
} else {
am.mantissa >>= shift;
}
am.power2 += shift;
}
fastfloat_really_inline void skip_zeros(const char*& first, const char* last) noexcept {
uint64_t val;
while (std::distance(first, last) >= 8) {
::memcpy(&val, first, sizeof(uint64_t));
if (val != 0x3030303030303030) {
break;
}
first += 8;
}
while (first != last) {
if (*first != '0') {
break;
}
first++;
}
}
// determine if any non-zero digits were truncated.
// all characters must be valid digits.
fastfloat_really_inline bool is_truncated(const char* first, const char* last) noexcept {
// do 8-bit optimizations, can just compare to 8 literal 0s.
uint64_t val;
while (std::distance(first, last) >= 8) {
::memcpy(&val, first, sizeof(uint64_t));
if (val != 0x3030303030303030) {
return true;
}
first += 8;
}
while (first != last) {
if (*first != '0') {
return true;
}
first++;
}
return false;
}
fastfloat_really_inline bool is_truncated(byte_span s) noexcept {
return is_truncated(s.ptr, s.ptr + s.len());
}
fastfloat_really_inline
void parse_eight_digits(const char*& p, limb& value, size_t& counter, size_t& count) noexcept {
value = value * 100000000 + parse_eight_digits_unrolled(p);
p += 8;
counter += 8;
count += 8;
}
fastfloat_really_inline
void parse_one_digit(const char*& p, limb& value, size_t& counter, size_t& count) noexcept {
value = value * 10 + limb(*p - '0');
p++;
counter++;
count++;
}
fastfloat_really_inline
void add_native(bigint& big, limb power, limb value) noexcept {
big.mul(power);
big.add(value);
}
fastfloat_really_inline void round_up_bigint(bigint& big, size_t& count) noexcept {
// need to round-up the digits, but need to avoid rounding
// ....9999 to ...10000, which could cause a false halfway point.
add_native(big, 10, 1);
count++;
}
// parse the significant digits into a big integer
inline void parse_mantissa(bigint& result, parsed_number_string& num, size_t max_digits, size_t& digits) noexcept {
// try to minimize the number of big integer and scalar multiplication.
// therefore, try to parse 8 digits at a time, and multiply by the largest
// scalar value (9 or 19 digits) for each step.
size_t counter = 0;
digits = 0;
limb value = 0;
#ifdef FASTFLOAT_64BIT_LIMB
size_t step = 19;
#else
size_t step = 9;
#endif
// process all integer digits.
const char* p = num.integer.ptr;
const char* pend = p + num.integer.len();
skip_zeros(p, pend);
// process all digits, in increments of step per loop
while (p != pend) {
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
parse_eight_digits(p, value, counter, digits);
}
while (counter < step && p != pend && digits < max_digits) {
parse_one_digit(p, value, counter, digits);
}
if (digits == max_digits) {
// add the temporary value, then check if we've truncated any digits
add_native(result, limb(powers_of_ten_uint64[counter]), value);
bool truncated = is_truncated(p, pend);
if (num.fraction.ptr != nullptr) {
truncated |= is_truncated(num.fraction);
}
if (truncated) {
round_up_bigint(result, digits);
}
return;
} else {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
counter = 0;
value = 0;
}
}
// add our fraction digits, if they're available.
if (num.fraction.ptr != nullptr) {
p = num.fraction.ptr;
pend = p + num.fraction.len();
if (digits == 0) {
skip_zeros(p, pend);
}
// process all digits, in increments of step per loop
while (p != pend) {
while ((std::distance(p, pend) >= 8) && (step - counter >= 8) && (max_digits - digits >= 8)) {
parse_eight_digits(p, value, counter, digits);
}
while (counter < step && p != pend && digits < max_digits) {
parse_one_digit(p, value, counter, digits);
}
if (digits == max_digits) {
// add the temporary value, then check if we've truncated any digits
add_native(result, limb(powers_of_ten_uint64[counter]), value);
bool truncated = is_truncated(p, pend);
if (truncated) {
round_up_bigint(result, digits);
}
return;
} else {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
counter = 0;
value = 0;
}
}
}
if (counter != 0) {
add_native(result, limb(powers_of_ten_uint64[counter]), value);
}
}
template <typename T>
inline adjusted_mantissa positive_digit_comp(bigint& bigmant, int32_t exponent) noexcept {
FASTFLOAT_ASSERT(bigmant.pow10(uint32_t(exponent)));
adjusted_mantissa answer;
bool truncated;
answer.mantissa = bigmant.hi64(truncated);
int bias = binary_format<T>::mantissa_explicit_bits() - binary_format<T>::minimum_exponent();
answer.power2 = bigmant.bit_length() - 64 + bias;
round<T>(answer, [truncated](adjusted_mantissa& a, int32_t shift) {
round_nearest_tie_even(a, shift, [truncated](bool is_odd, bool is_halfway, bool is_above) -> bool {
return is_above || (is_halfway && truncated) || (is_odd && is_halfway);
});
});
return answer;
}
// the scaling here is quite simple: we have, for the real digits `m * 10^e`,
// and for the theoretical digits `n * 2^f`. Since `e` is always negative,
// to scale them identically, we do `n * 2^f * 5^-f`, so we now have `m * 2^e`.
// we then need to scale by `2^(f- e)`, and then the two significant digits
// are of the same magnitude.
template <typename T>
inline adjusted_mantissa negative_digit_comp(bigint& bigmant, adjusted_mantissa am, int32_t exponent) noexcept {
bigint& real_digits = bigmant;
int32_t real_exp = exponent;
// get the value of `b`, rounded down, and get a bigint representation of b+h
adjusted_mantissa am_b = am;
// gcc7 buf: use a lambda to remove the noexcept qualifier bug with -Wnoexcept-type.
round<T>(am_b, [](adjusted_mantissa&a, int32_t shift) { round_down(a, shift); });
T b;
to_float(false, am_b, b);
adjusted_mantissa theor = to_extended_halfway(b);
bigint theor_digits(theor.mantissa);
int32_t theor_exp = theor.power2;
// scale real digits and theor digits to be same power.
int32_t pow2_exp = theor_exp - real_exp;
uint32_t pow5_exp = uint32_t(-real_exp);
if (pow5_exp != 0) {
FASTFLOAT_ASSERT(theor_digits.pow5(pow5_exp));
}
if (pow2_exp > 0) {
FASTFLOAT_ASSERT(theor_digits.pow2(uint32_t(pow2_exp)));
} else if (pow2_exp < 0) {
FASTFLOAT_ASSERT(real_digits.pow2(uint32_t(-pow2_exp)));
}
// compare digits, and use it to director rounding
int ord = real_digits.compare(theor_digits);
adjusted_mantissa answer = am;
round<T>(answer, [ord](adjusted_mantissa& a, int32_t shift) {
round_nearest_tie_even(a, shift, [ord](bool is_odd, bool _, bool __) -> bool {
(void)_; // not needed, since we've done our comparison
(void)__; // not needed, since we've done our comparison
if (ord > 0) {
return true;
} else if (ord < 0) {
return false;
} else {
return is_odd;
}
});
});
return answer;
}
// parse the significant digits as a big integer to unambiguously round the
// the significant digits. here, we are trying to determine how to round
// an extended float representation close to `b+h`, halfway between `b`
// (the float rounded-down) and `b+u`, the next positive float. this
// algorithm is always correct, and uses one of two approaches. when
// the exponent is positive relative to the significant digits (such as
// 1234), we create a big-integer representation, get the high 64-bits,
// determine if any lower bits are truncated, and use that to direct
// rounding. in case of a negative exponent relative to the significant
// digits (such as 1.2345), we create a theoretical representation of
// `b` as a big-integer type, scaled to the same binary exponent as
// the actual digits. we then compare the big integer representations
// of both, and use that to direct rounding.
template <typename T>
inline adjusted_mantissa digit_comp(parsed_number_string& num, adjusted_mantissa am) noexcept {
// remove the invalid exponent bias
am.power2 -= invalid_am_bias;
int32_t sci_exp = scientific_exponent(num);
size_t max_digits = binary_format<T>::max_digits();
size_t digits = 0;
bigint bigmant;
parse_mantissa(bigmant, num, max_digits, digits);
// can't underflow, since digits is at most max_digits.
int32_t exponent = sci_exp + 1 - int32_t(digits);
if (exponent >= 0) {
return positive_digit_comp<T>(bigmant, exponent);
} else {
return negative_digit_comp<T>(bigmant, am, exponent);
}
}
} // namespace fast_float
#endif
#ifndef FASTFLOAT_PARSE_NUMBER_H
#define FASTFLOAT_PARSE_NUMBER_H
#include <cmath>
#include <cstring>
#include <limits>
#include <system_error>
namespace fast_float {
namespace detail {
/**
* Special case +inf, -inf, nan, infinity, -infinity.
* The case comparisons could be made much faster given that we know that the
* strings a null-free and fixed.
**/
template <typename T>
from_chars_result parse_infnan(const char *first, const char *last, T &value) noexcept {
from_chars_result answer;
answer.ptr = first;
answer.ec = std::errc(); // be optimistic
bool minusSign = false;
if (*first == '-') { // assume first < last, so dereference without checks; C++17 20.19.3.(7.1) explicitly forbids '+' here
minusSign = true;
++first;
}
if (last - first >= 3) {
if (fastfloat_strncasecmp(first, "nan", 3)) {
answer.ptr = (first += 3);
value = minusSign ? -std::numeric_limits<T>::quiet_NaN() : std::numeric_limits<T>::quiet_NaN();
// Check for possible nan(n-char-seq-opt), C++17 20.19.3.7, C11 7.20.1.3.3. At least MSVC produces nan(ind) and nan(snan).
if(first != last && *first == '(') {
for(const char* ptr = first + 1; ptr != last; ++ptr) {
if (*ptr == ')') {
answer.ptr = ptr + 1; // valid nan(n-char-seq-opt)
break;
}
else if(!(('a' <= *ptr && *ptr <= 'z') || ('A' <= *ptr && *ptr <= 'Z') || ('0' <= *ptr && *ptr <= '9') || *ptr == '_'))
break; // forbidden char, not nan(n-char-seq-opt)
}
}
return answer;
}
if (fastfloat_strncasecmp(first, "inf", 3)) {
if ((last - first >= 8) && fastfloat_strncasecmp(first + 3, "inity", 5)) {
answer.ptr = first + 8;
} else {
answer.ptr = first + 3;
}
value = minusSign ? -std::numeric_limits<T>::infinity() : std::numeric_limits<T>::infinity();
return answer;
}
}
answer.ec = std::errc::invalid_argument;
return answer;
}
} // namespace detail
template<typename T>
from_chars_result from_chars(const char *first, const char *last,
T &value, chars_format fmt /*= chars_format::general*/) noexcept {
return from_chars_advanced(first, last, value, parse_options{fmt});
}
template<typename T>
from_chars_result from_chars_advanced(const char *first, const char *last,
T &value, parse_options options) noexcept {
static_assert (std::is_same<T, double>::value || std::is_same<T, float>::value, "only float and double are supported");
from_chars_result answer;
if (first == last) {
answer.ec = std::errc::invalid_argument;
answer.ptr = first;
return answer;
}
parsed_number_string pns = parse_number_string(first, last, options);
if (!pns.valid) {
return detail::parse_infnan(first, last, value);
}
answer.ec = std::errc(); // be optimistic
answer.ptr = pns.lastmatch;
// Next is Clinger's fast path.
if (binary_format<T>::min_exponent_fast_path() <= pns.exponent && pns.exponent <= binary_format<T>::max_exponent_fast_path() && pns.mantissa <=binary_format<T>::max_mantissa_fast_path() && !pns.too_many_digits) {
value = T(pns.mantissa);
if (pns.exponent < 0) { value = value / binary_format<T>::exact_power_of_ten(-pns.exponent); }
else { value = value * binary_format<T>::exact_power_of_ten(pns.exponent); }
if (pns.negative) { value = -value; }
return answer;
}
adjusted_mantissa am = compute_float<binary_format<T>>(pns.exponent, pns.mantissa);
if(pns.too_many_digits && am.power2 >= 0) {
if(am != compute_float<binary_format<T>>(pns.exponent, pns.mantissa + 1)) {
am = compute_error<binary_format<T>>(pns.exponent, pns.mantissa);
}
}
// If we called compute_float<binary_format<T>>(pns.exponent, pns.mantissa) and we have an invalid power (am.power2 < 0),
// then we need to go the long way around again. This is very uncommon.
if(am.power2 < 0) { am = digit_comp<T>(pns, am); }
to_float(pns.negative, am, value);
return answer;
}
} // namespace fast_float
#endif
|