1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
/*
This file is part of the SimpleCompressor project.
https://github.com/DanielRudrich/SimpleCompressor
Copyright (c) 2019 Daniel Rudrich
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, version 3.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "GainReductionComputer.h"
#include "MathApprox.h"
namespace DanielRudrich {
namespace
{
float getSlope(float ratio) { return 1 / ratio - 1; }
float getRatio(float slope) { return 1 / (slope + 1); }
} // namespace
float GainReductionComputer::getCharacteristicSample(float inputLevelInDecibels,
float kneeInDecibels,
float thresholdInDecibels,
float ratio,
float makeUpGainInDecibels)
{
const auto slope = getSlope(ratio);
float overShoot = inputLevelInDecibels - thresholdInDecibels;
overShoot = applyCharacteristicToOverShoot(overShoot, kneeInDecibels, slope);
return overShoot + inputLevelInDecibels + makeUpGainInDecibels;
}
GainReductionComputer::GainReductionComputer()
{
sampleRate = 0.0f;
threshold = -10.0f;
knee = 0.0f;
kneeHalf = 0.0f;
attackTime = 0.01f;
releaseTime = 0.15f;
setRatio (2); // 2 : 1
makeUpGain = 0.0f;
reset();
}
void GainReductionComputer::prepare (const double newSampleRate)
{
sampleRate = newSampleRate;
alphaAttack = 1.0f - timeToGain (attackTime);
alphaRelease = 1.0f - timeToGain (releaseTime);
}
void GainReductionComputer::setAttackTime (const float attackTimeInSeconds)
{
attackTime = attackTimeInSeconds;
alphaAttack = 1.0f - timeToGain (attackTime);
}
void GainReductionComputer::setReleaseTime (const float releaseTimeInSeconds)
{
releaseTime = releaseTimeInSeconds;
alphaRelease = 1.0f - timeToGain (releaseTime);
}
const float GainReductionComputer::timeToGain (const float timeInSeconds)
{
return std::exp (-1.0f / (static_cast<float> (sampleRate) * timeInSeconds));
}
void GainReductionComputer::setKnee (const float kneeInDecibels)
{
knee = kneeInDecibels;
kneeHalf = knee / 2.0f;
}
void GainReductionComputer::setThreshold (const float thresholdInDecibels)
{
threshold = thresholdInDecibels;
}
void GainReductionComputer::setMakeUpGain (const float makeUpGainInDecibels)
{
makeUpGain = makeUpGainInDecibels;
}
void GainReductionComputer::setRatio (const float ratio)
{
slope = getSlope(ratio);
}
inline const float GainReductionComputer::applyCharacteristicToOverShoot (const float overShootInDecibels)
{
return applyCharacteristicToOverShoot(overShootInDecibels, knee, slope);
}
float GainReductionComputer::applyCharacteristicToOverShoot(
float overShootInDecibels, float knee, float slope)
{
const auto kneeHalf = knee / 2;
if (overShootInDecibels <= -kneeHalf)
return 0.0f;
else if (overShootInDecibels > -kneeHalf && overShootInDecibels <= kneeHalf)
return 0.5f * slope * (overShootInDecibels + kneeHalf) * (overShootInDecibels + kneeHalf) / knee;
else
return slope * overShootInDecibels;
}
void GainReductionComputer::computeGainInDecibelsFromSidechainSignal (const float* sideChainSignal, float* destination, const int numSamples)
{
maxInputLevel = -std::numeric_limits<float>::infinity();
maxGainReduction = 0.0f;
for (int i = 0; i < numSamples; ++i)
{
// convert sample to decibels
const float levelInDecibels =
log2ToDb * FastLog2(std::abs(sideChainSignal[i]));
if (levelInDecibels > maxInputLevel)
maxInputLevel = levelInDecibels;
// calculate overshoot and apply knee and ratio
const float overShoot = levelInDecibels - threshold;
const float gainReduction = applyCharacteristicToOverShoot (overShoot);
// apply ballistics
const float diff = gainReduction - state;
if (diff < 0.0f) // wanted gain reduction is below state -> attack phase
state += alphaAttack * diff;
else // release phase
state += alphaRelease * diff;
// write back gain reduction
destination[i] = state;
if (state < maxGainReduction)
maxGainReduction = state;
}
}
void GainReductionComputer::computeLinearGainFromSidechainSignal (const float* sideChainSignal, float* destination, const int numSamples)
{
computeGainInDecibelsFromSidechainSignal (sideChainSignal, destination, numSamples);
for (int i = 0; i < numSamples; ++i)
destination[i] = std::pow (10.0f, 0.05f * (destination[i] + makeUpGain));
}
void GainReductionComputer::getCharacteristic (float* inputLevelsInDecibels, float* dest, const int numSamples)
{
for (int i = 0; i < numSamples; ++i)
dest[i] = getCharacteristicSample (inputLevelsInDecibels[i]);
}
float GainReductionComputer::getCharacteristicSample (const float inputLevelInDecibels)
{
return getCharacteristicSample(inputLevelInDecibels, knee, threshold,
getRatio(slope), makeUpGain);
}
} // namespace DanielRudrich
|