1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
|
/**********************************************************************
Audacity: A Digital Audio Editor
Biquad.cpp
Norm C
Max Maisel
***********************************************************************/
#include "Biquad.h"
#include <cmath>
#include <wx/utils.h>
#define square(a) ((a)*(a))
#define PI M_PI
Biquad::Biquad()
{
fNumerCoeffs[B0] = 1;
fNumerCoeffs[B1] = 0;
fNumerCoeffs[B2] = 0;
fDenomCoeffs[A1] = 0;
fDenomCoeffs[A2] = 0;
Reset();
}
void Biquad::Reset()
{
fPrevIn = 0;
fPrevPrevIn = 0;
fPrevOut = 0;
fPrevPrevOut = 0;
}
void Biquad::Process(const float* pfIn, float* pfOut, int iNumSamples)
{
for (int i = 0; i < iNumSamples; i++)
*pfOut++ = ProcessOne(*pfIn++);
}
const double Biquad::s_fChebyCoeffs[MAX_Order][MAX_Order + 1] =
{
// For Chebyshev polynomials of the first kind (see http://en.wikipedia.org/wiki/Chebyshev_polynomial)
// Coeffs are in the order 0, 1, 2...9
{ 0, 1}, // order 1
{-1, 0, 2}, // order 2 etc.
{ 0, -3, 0, 4},
{ 1, 0, -8, 0, 8},
{ 0, 5, 0, -20, 0, 16},
{-1, 0, 18, 0, -48, 0, 32},
{ 0, -7, 0, 56, 0, -112, 0, 64},
{ 1, 0, -32, 0, 160, 0, -256, 0, 128},
{ 0, 9, 0, -120, 0, 432, 0, -576, 0, 256},
{-1, 0, 50, 0, -400, 0, 1120, 0, -1280, 0, 512}
};
// order: filter order
// fn: nyquist frequency, i.e. half sample rate
// fc: cutoff frequency
// subtype: highpass or lowpass
ArrayOf<Biquad> Biquad::CalcButterworthFilter(int order, double fn, double fc, int subtype)
{
ArrayOf<Biquad> pBiquad(size_t((order+1) / 2), true);
// Set up the coefficients in all the biquads
double fNorm = fc / fn;
if (fNorm >= 0.9999)
fNorm = 0.9999F;
double fC = tan (PI * fNorm / 2);
double fDCPoleDistSqr = 1.0F;
double fZPoleX, fZPoleY;
if ((order & 1) == 0)
{
// Even order
for (int iPair = 0; iPair < order/2; iPair++)
{
double fSPoleX = fC * cos (PI - (iPair + 0.5) * PI / order);
double fSPoleY = fC * sin (PI - (iPair + 0.5) * PI / order);
BilinTransform (fSPoleX, fSPoleY, &fZPoleX, &fZPoleY);
pBiquad[iPair].fNumerCoeffs [B0] = 1;
if (subtype == kLowPass) // LOWPASS
pBiquad[iPair].fNumerCoeffs [B1] = 2;
else
pBiquad[iPair].fNumerCoeffs [B1] = -2;
pBiquad[iPair].fNumerCoeffs [B2] = 1;
pBiquad[iPair].fDenomCoeffs [A1] = -2 * fZPoleX;
pBiquad[iPair].fDenomCoeffs [A2] = square(fZPoleX) + square(fZPoleY);
if (subtype == kLowPass) // LOWPASS
fDCPoleDistSqr *= Calc2D_DistSqr (1, 0, fZPoleX, fZPoleY);
else
fDCPoleDistSqr *= Calc2D_DistSqr (-1, 0, fZPoleX, fZPoleY); // distance from Nyquist
}
}
else
{
// Odd order - first do the 1st-order section
double fSPoleX = -fC;
double fSPoleY = 0;
BilinTransform (fSPoleX, fSPoleY, &fZPoleX, &fZPoleY);
pBiquad[0].fNumerCoeffs [B0] = 1;
if (subtype == kLowPass) // LOWPASS
pBiquad[0].fNumerCoeffs [B1] = 1;
else
pBiquad[0].fNumerCoeffs [B1] = -1;
pBiquad[0].fNumerCoeffs [B2] = 0;
pBiquad[0].fDenomCoeffs [A1] = -fZPoleX;
pBiquad[0].fDenomCoeffs [A2] = 0;
if (subtype == kLowPass) // LOWPASS
fDCPoleDistSqr = 1 - fZPoleX;
else
fDCPoleDistSqr = fZPoleX + 1; // dist from Nyquist
for (int iPair = 1; iPair <= order/2; iPair++)
{
double fSPoleX = fC * cos (PI - iPair * PI / order);
double fSPoleY = fC * sin (PI - iPair * PI / order);
BilinTransform (fSPoleX, fSPoleY, &fZPoleX, &fZPoleY);
pBiquad[iPair].fNumerCoeffs [B0] = 1;
if (subtype == kLowPass) // LOWPASS
pBiquad[iPair].fNumerCoeffs [B1] = 2;
else
pBiquad[iPair].fNumerCoeffs [B1] = -2;
pBiquad[iPair].fNumerCoeffs [B2] = 1;
pBiquad[iPair].fDenomCoeffs [A1] = -2 * fZPoleX;
pBiquad[iPair].fDenomCoeffs [A2] = square(fZPoleX) + square(fZPoleY);
if (subtype == kLowPass) // LOWPASS
fDCPoleDistSqr *= Calc2D_DistSqr (1, 0, fZPoleX, fZPoleY);
else
fDCPoleDistSqr *= Calc2D_DistSqr (-1, 0, fZPoleX, fZPoleY); // distance from Nyquist
}
}
pBiquad[0].fNumerCoeffs [B0] *= fDCPoleDistSqr / (1 << order); // mult by DC dist from poles, divide by dist from zeroes
pBiquad[0].fNumerCoeffs [B1] *= fDCPoleDistSqr / (1 << order);
pBiquad[0].fNumerCoeffs [B2] *= fDCPoleDistSqr / (1 << order);
return pBiquad;
}
// order: filter order
// fn: nyquist frequency, i.e. half sample rate
// fc: cutoff frequency
// ripple: passband ripple in dB
// subtype: highpass or lowpass
ArrayOf<Biquad> Biquad::CalcChebyshevType1Filter(int order, double fn, double fc, double ripple, int subtype)
{
ArrayOf<Biquad> pBiquad(size_t((order+1) / 2), true);
// Set up the coefficients in all the biquads
double fNorm = fc / fn;
if (fNorm >= 0.9999)
fNorm = 0.9999F;
double fC = tan (PI * fNorm / 2);
double fDCPoleDistSqr = 1.0F;
double fZPoleX, fZPoleY;
double fZZeroX;
double beta = cos (fNorm*PI);
double eps; eps = sqrt (pow (10.0, wxMax(0.001, ripple) / 10.0) - 1);
double a; a = log (1 / eps + sqrt(1 / square(eps) + 1)) / order;
// Assume even order to start
for (int iPair = 0; iPair < order/2; iPair++)
{
double fSPoleX = -fC * sinh (a) * sin ((2*iPair + 1) * PI / (2 * order));
double fSPoleY = fC * cosh (a) * cos ((2*iPair + 1) * PI / (2 * order));
BilinTransform (fSPoleX, fSPoleY, &fZPoleX, &fZPoleY);
if (subtype == kLowPass) // LOWPASS
{
fZZeroX = -1;
fDCPoleDistSqr = Calc2D_DistSqr (1, 0, fZPoleX, fZPoleY);
fDCPoleDistSqr /= 2*2; // dist from zero at Nyquist
}
else
{
// Highpass - do the digital LP->HP transform on the poles and zeroes
ComplexDiv (beta - fZPoleX, -fZPoleY, 1 - beta * fZPoleX, -beta * fZPoleY, &fZPoleX, &fZPoleY);
fZZeroX = 1;
fDCPoleDistSqr = Calc2D_DistSqr (-1, 0, fZPoleX, fZPoleY); // distance from Nyquist
fDCPoleDistSqr /= 2*2; // dist from zero at Nyquist
}
pBiquad[iPair].fNumerCoeffs [B0] = fDCPoleDistSqr;
pBiquad[iPair].fNumerCoeffs [B1] = -2 * fZZeroX * fDCPoleDistSqr;
pBiquad[iPair].fNumerCoeffs [B2] = fDCPoleDistSqr;
pBiquad[iPair].fDenomCoeffs [A1] = -2 * fZPoleX;
pBiquad[iPair].fDenomCoeffs [A2] = square(fZPoleX) + square(fZPoleY);
}
if ((order & 1) == 0)
{
double fTemp = DB_TO_LINEAR(-wxMax(0.001, ripple)); // at DC the response is down R dB (for even-order)
pBiquad[0].fNumerCoeffs [B0] *= fTemp;
pBiquad[0].fNumerCoeffs [B1] *= fTemp;
pBiquad[0].fNumerCoeffs [B2] *= fTemp;
}
else
{
// Odd order - now do the 1st-order section
double fSPoleX = -fC * sinh (a);
double fSPoleY = 0;
BilinTransform (fSPoleX, fSPoleY, &fZPoleX, &fZPoleY);
if (subtype == kLowPass) // LOWPASS
{
fZZeroX = -1;
fDCPoleDistSqr = sqrt(Calc2D_DistSqr (1, 0, fZPoleX, fZPoleY));
fDCPoleDistSqr /= 2; // dist from zero at Nyquist
}
else
{
// Highpass - do the digital LP->HP transform on the poles and zeroes
ComplexDiv (beta - fZPoleX, -fZPoleY, 1 - beta * fZPoleX, -beta * fZPoleY, &fZPoleX, &fZPoleY);
fZZeroX = 1;
fDCPoleDistSqr = sqrt(Calc2D_DistSqr (-1, 0, fZPoleX, fZPoleY)); // distance from Nyquist
fDCPoleDistSqr /= 2; // dist from zero at Nyquist
}
pBiquad[(order-1)/2].fNumerCoeffs [B0] = fDCPoleDistSqr;
pBiquad[(order-1)/2].fNumerCoeffs [B1] = -fZZeroX * fDCPoleDistSqr;
pBiquad[(order-1)/2].fNumerCoeffs [B2] = 0;
pBiquad[(order-1)/2].fDenomCoeffs [A1] = -fZPoleX;
pBiquad[(order-1)/2].fDenomCoeffs [A2] = 0;
}
return pBiquad;
}
// order: filter order
// fn: nyquist frequency, i.e. half sample rate
// fc: cutoff frequency
// ripple: stopband ripple in dB
// subtype: highpass or lowpass
ArrayOf<Biquad> Biquad::CalcChebyshevType2Filter(int order, double fn, double fc, double ripple, int subtype)
{
ArrayOf<Biquad> pBiquad(size_t((order+1) / 2), true);
// Set up the coefficients in all the biquads
double fNorm = fc / fn;
if (fNorm >= 0.9999)
fNorm = 0.9999F;
double fC = tan (PI * fNorm / 2);
double fDCPoleDistSqr = 1.0F;
double fZPoleX, fZPoleY;
double fZZeroX, fZZeroY;
double beta = cos (fNorm*PI);
double fSZeroX, fSZeroY;
double fSPoleX, fSPoleY;
double eps = DB_TO_LINEAR(-wxMax(0.001, ripple));
double a = log (1 / eps + sqrt(1 / square(eps) + 1)) / order;
// Assume even order
for (int iPair = 0; iPair < order/2; iPair++)
{
ComplexDiv (fC, 0, -sinh (a) * sin ((2*iPair + 1) * PI / (2 * order)),
cosh (a) * cos ((2*iPair + 1) * PI / (2 * order)),
&fSPoleX, &fSPoleY);
BilinTransform (fSPoleX, fSPoleY, &fZPoleX, &fZPoleY);
fSZeroX = 0;
fSZeroY = fC / cos (((2 * iPair) + 1) * PI / (2 * order));
BilinTransform (fSZeroX, fSZeroY, &fZZeroX, &fZZeroY);
if (subtype == kLowPass) // LOWPASS
{
fDCPoleDistSqr = Calc2D_DistSqr (1, 0, fZPoleX, fZPoleY);
fDCPoleDistSqr /= Calc2D_DistSqr (1, 0, fZZeroX, fZZeroY);
}
else
{
// Highpass - do the digital LP->HP transform on the poles and zeroes
ComplexDiv (beta - fZPoleX, -fZPoleY, 1 - beta * fZPoleX, -beta * fZPoleY, &fZPoleX, &fZPoleY);
ComplexDiv (beta - fZZeroX, -fZZeroY, 1 - beta * fZZeroX, -beta * fZZeroY, &fZZeroX, &fZZeroY);
fDCPoleDistSqr = Calc2D_DistSqr (-1, 0, fZPoleX, fZPoleY); // distance from Nyquist
fDCPoleDistSqr /= Calc2D_DistSqr (-1, 0, fZZeroX, fZZeroY);
}
pBiquad[iPair].fNumerCoeffs [B0] = fDCPoleDistSqr;
pBiquad[iPair].fNumerCoeffs [B1] = -2 * fZZeroX * fDCPoleDistSqr;
pBiquad[iPair].fNumerCoeffs [B2] = (square(fZZeroX) + square(fZZeroY)) * fDCPoleDistSqr;
pBiquad[iPair].fDenomCoeffs [A1] = -2 * fZPoleX;
pBiquad[iPair].fDenomCoeffs [A2] = square(fZPoleX) + square(fZPoleY);
}
// Now, if it's odd order, we have one more to do
if (order & 1)
{
int iPair = (order-1)/2; // we'll do it as a biquad, but it's just first-order
ComplexDiv (fC, 0, -sinh (a) * sin ((2*iPair + 1) * PI / (2 * order)),
cosh (a) * cos ((2*iPair + 1) * PI / (2 * order)),
&fSPoleX, &fSPoleY);
BilinTransform (fSPoleX, fSPoleY, &fZPoleX, &fZPoleY);
fZZeroX = -1; // in the s-plane, the zero is at infinity
fZZeroY = 0;
if (subtype == kLowPass) // LOWPASS
{
fDCPoleDistSqr = sqrt(Calc2D_DistSqr (1, 0, fZPoleX, fZPoleY));
fDCPoleDistSqr /= 2;
}
else
{
// Highpass - do the digital LP->HP transform on the poles and zeroes
ComplexDiv (beta - fZPoleX, -fZPoleY, 1 - beta * fZPoleX, -fZPoleY, &fZPoleX, &fZPoleY);
fZZeroX = 1;
fDCPoleDistSqr = sqrt(Calc2D_DistSqr (-1, 0, fZPoleX, fZPoleY)); // distance from Nyquist
fDCPoleDistSqr /= 2;
}
pBiquad[iPair].fNumerCoeffs [B0] = fDCPoleDistSqr;
pBiquad[iPair].fNumerCoeffs [B1] = -fZZeroX * fDCPoleDistSqr;
pBiquad[iPair].fNumerCoeffs [B2] = 0;
pBiquad[iPair].fDenomCoeffs [A1] = -fZPoleX;
pBiquad[iPair].fDenomCoeffs [A2] = 0;
}
return pBiquad;
}
void Biquad::ComplexDiv (double fNumerR, double fNumerI, double fDenomR, double fDenomI,
double* pfQuotientR, double* pfQuotientI)
{
double fDenom = square(fDenomR) + square(fDenomI);
*pfQuotientR = (fNumerR * fDenomR + fNumerI * fDenomI) / fDenom;
*pfQuotientI = (fNumerI * fDenomR - fNumerR * fDenomI) / fDenom;
}
bool Biquad::BilinTransform (double fSX, double fSY, double* pfZX, double* pfZY)
{
double fDenom = square (1 - fSX) + square (fSY);
*pfZX = (1 - square (fSX) - square (fSY)) / fDenom;
*pfZY = 2 * fSY / fDenom;
return true;
}
float Biquad::Calc2D_DistSqr (double fX1, double fY1, double fX2, double fY2)
{
return square (fX1 - fX2) + square (fY1 - fY2);
}
double Biquad::ChebyPoly(int Order, double NormFreq) // NormFreq = 1 at the f0 point (where response is R dB down)
{
// Calc cosh (Order * acosh (NormFreq));
double x = 1;
double fSum = 0;
wxASSERT (Order >= MIN_Order && Order <= MAX_Order);
for (int i = 0; i <= Order; i++)
{
fSum += s_fChebyCoeffs [Order-1][i] * x;
x *= NormFreq;
}
return fSum;
}
|