1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
|
/*!********************************************************************
Audacity: A Digital Audio Editor
@file ToChars.h
@brief Define functions to convert numeric types to string representation.
Dmitry Vedenko
**********************************************************************/
#include "ToChars.h"
#include <array>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <numeric>
#if defined(_MSC_VER) && defined(_M_X64)
#include <intrin.h>
#endif
namespace internal
{
/*
Adaptation of itoa implementation by James Edward Anhalt III: https://github.com/jeaiii/itoa/blob/main/itoa/itoa_jeaiii.cpp
MIT License
Copyright (c) 2017 James Edward Anhalt III - https://github.com/jeaiii/itoa
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
namespace itoa_impl
{
struct pair final
{
char t, o;
};
#define P(T) T, '0', T, '1', T, '2', T, '3', T, '4', T, '5', T, '6', T, '7', T, '8', T, '9'
static const pair s_pairs[] = { P('0'), P('1'), P('2'), P('3'), P('4'), P('5'), P('6'), P('7'), P('8'), P('9') };
#define W(N, I) *(pair*)&b[N] = s_pairs[I]
#define A(N) t = (uint64_t(1) << (32 + N / 5 * N * 53 / 16)) / uint32_t(1e##N) + 1 + N / 6 - N / 8, t *= u, t >>= N / 5 * N * 53 / 16, t += N / 6 * 4, W(0, t >> 32)
#define S(N) b[N] = char(uint64_t(10) * uint32_t(t) >> 32) + '0'
#define D(N) t = uint64_t(100) * uint32_t(t), W(N, t >> 32)
#define L0 b[0] = char(u) + '0'
#define L1 W(0, u)
#define L2 A(1), S(2)
#define L3 A(2), D(2)
#define L4 A(3), D(2), S(4)
#define L5 A(4), D(2), D(4)
#define L6 A(5), D(2), D(4), S(6)
#define L7 A(6), D(2), D(4), D(6)
#define L8 A(7), D(2), D(4), D(6), S(8)
#define L9 A(8), D(2), D(4), D(6), D(8)
#define LN(N) (L##N, b += N + 1)
#define LZ LN
// if you want to '\0' terminate
//#define LZ(N) &(L##N, b[N + 1] = '\0')
#define LG(F) \
(u < 100 ? u < 10 ? F(0) : F(1) : \
u < 1000000 ? u < 10000 ? u < 1000 ? F(2) : F(3) : \
u < 100000 ? F(4) : \
F(5) : \
u < 100000000 ? u < 10000000 ? F(6) : F(7) : \
u < 1000000000 ? F(8) : \
F(9))
char* u64toa_jeaiii(uint64_t n, char* b)
{
uint32_t u;
uint64_t t;
if (uint32_t(n >> 32) == 0)
{
u = uint32_t(n);
return LG(LZ);
}
uint64_t a = n / 100000000;
if (uint32_t(a >> 32) == 0)
{
u = uint32_t(a);
LG(LN);
}
else
{
u = uint32_t(a / 100000000);
LG(LN);
u = a % 100000000;
LN(7);
}
u = n % 100000000;
return LZ(7);
}
} // namespace itoa_impl
/*
Implements the Grisu2 algorithm for binary to decimal floating-point
conversion.
Adapted from simdjson: https://github.com/simdjson/simdjson/blob/master/src/to_chars.cpp
Changes:
* SIMD is returned where possible.
* Buffer size is obeyed
* Some Audacity specific cases covered
Adapted from JSON for Modern C++
This implementation is a slightly modified version of the reference
implementation which may be obtained from
http://florian.loitsch.com/publications (bench.tar.gz).
The code is distributed under the MIT license, Copyright (c) 2009 Florian
Loitsch. For a detailed description of the algorithm see: [1] Loitsch, "Printing
Floating-Point Numbers Quickly and Accurately with Integers", Proceedings of the
ACM SIGPLAN 2010 Conference on Programming Language Design and Implementation,
PLDI 2010 [2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and
Accurately", Proceedings of the ACM SIGPLAN 1996 Conference on Programming
Language Design and Implementation, PLDI 1996
*/
namespace dtoa_impl
{
template <typename Target, typename Source>
Target reinterpret_bits(const Source source)
{
static_assert(sizeof(Target) == sizeof(Source), "size mismatch");
Target target;
std::memcpy(&target, &source, sizeof(Source));
return target;
}
struct diyfp // f * 2^e
{
static constexpr int kPrecision = 64; // = q
std::uint64_t f = 0;
int e = 0;
constexpr diyfp(std::uint64_t f_, int e_) noexcept
: f(f_)
, e(e_)
{
}
/*!
@brief returns x - y
@pre x.e == y.e and x.f >= y.f
*/
static diyfp sub(const diyfp& x, const diyfp& y) noexcept
{
return { x.f - y.f, x.e };
}
/*!
@brief returns x * y
@note The result is rounded. (Only the upper q bits are returned.)
*/
static diyfp mul(const diyfp& x, const diyfp& y) noexcept
{
static_assert(kPrecision == 64, "internal error");
// Computes:
// f = round((x.f * y.f) / 2^q)
// e = x.e + y.e + q
#if defined(_MSC_VER) && defined(_M_X64)
uint64_t h = 0;
uint64_t l = _umul128(x.f, y.f, &h);
h += l >> 63; // round, ties up: [h, l] += 2^q / 2
return { h, x.e + y.e + 64 };
#elif defined(__GNUC__) && defined(__SIZEOF_INT128__)
__extension__ using Uint128 = unsigned __int128;
Uint128 const p = Uint128{x.f} * Uint128{y.f};
uint64_t h = static_cast<uint64_t>(p >> 64);
uint64_t l = static_cast<uint64_t>(p);
h += l >> 63; // round, ties up: [h, l] += 2^q / 2
return { h, x.e + y.e + 64 };
#else
// Emulate the 64-bit * 64-bit multiplication:
//
// p = u * v
// = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi)
// = (u_lo v_lo ) + 2^32 ((u_lo v_hi ) + (u_hi v_lo )) +
// 2^64 (u_hi v_hi ) = (p0 ) + 2^32 ((p1 ) + (p2
// ))
// + 2^64 (p3 ) = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo +
// 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3 ) =
// (p0_lo ) + 2^32 (p0_hi + p1_lo + p2_lo ) + 2^64 (p1_hi +
// p2_hi + p3) = (p0_lo ) + 2^32 (Q ) + 2^64 (H ) = (p0_lo )
// + 2^32 (Q_lo + 2^32 Q_hi ) + 2^64 (H )
//
// (Since Q might be larger than 2^32 - 1)
//
// = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H)
//
// (Q_hi + H does not overflow a 64-bit int)
//
// = p_lo + 2^64 p_hi
const std::uint64_t u_lo = x.f & 0xFFFFFFFFu;
const std::uint64_t u_hi = x.f >> 32u;
const std::uint64_t v_lo = y.f & 0xFFFFFFFFu;
const std::uint64_t v_hi = y.f >> 32u;
const std::uint64_t p0 = u_lo * v_lo;
const std::uint64_t p1 = u_lo * v_hi;
const std::uint64_t p2 = u_hi * v_lo;
const std::uint64_t p3 = u_hi * v_hi;
const std::uint64_t p0_hi = p0 >> 32u;
const std::uint64_t p1_lo = p1 & 0xFFFFFFFFu;
const std::uint64_t p1_hi = p1 >> 32u;
const std::uint64_t p2_lo = p2 & 0xFFFFFFFFu;
const std::uint64_t p2_hi = p2 >> 32u;
std::uint64_t Q = p0_hi + p1_lo + p2_lo;
// The full product might now be computed as
//
// p_hi = p3 + p2_hi + p1_hi + (Q >> 32)
// p_lo = p0_lo + (Q << 32)
//
// But in this particular case here, the full p_lo is not required.
// Effectively we only need to add the highest bit in p_lo to p_hi (and
// Q_hi + 1 does not overflow).
Q += std::uint64_t { 1 } << (64u - 32u - 1u); // round, ties up
const std::uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32u);
return { h, x.e + y.e + 64 };
#endif
}
/*!
@brief normalize x such that the significand is >= 2^(q-1)
@pre x.f != 0
*/
static diyfp normalize(diyfp x) noexcept
{
while ((x.f >> 63u) == 0)
{
x.f <<= 1u;
x.e--;
}
return x;
}
/*!
@brief normalize x such that the result has the exponent E
@pre e >= x.e and the upper e - x.e bits of x.f must be zero.
*/
static diyfp normalize_to(const diyfp& x, const int target_exponent) noexcept
{
const int delta = x.e - target_exponent;
return { x.f << delta, target_exponent };
}
};
struct boundaries
{
diyfp w;
diyfp minus;
diyfp plus;
};
/*!
Compute the (normalized) diyfp representing the input number 'value' and its
boundaries.
@pre value must be finite and positive
*/
template <typename FloatType> boundaries compute_boundaries(FloatType value)
{
// Convert the IEEE representation into a diyfp.
//
// If v is denormal:
// value = 0.F * 2^(1 - bias) = ( F) * 2^(1 - bias - (p-1))
// If v is normalized:
// value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1))
static_assert(
std::numeric_limits<FloatType>::is_iec559,
"internal error: dtoa_short requires an IEEE-754 "
"floating-point implementation");
constexpr int kPrecision =
std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit)
constexpr int kBias =
std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1);
constexpr int kMinExp = 1 - kBias;
constexpr std::uint64_t kHiddenBit = std::uint64_t { 1 }
<< (kPrecision - 1); // = 2^(p-1)
using bits_type = std::conditional_t<
kPrecision == 24, std::uint32_t, std::uint64_t>;
const std::uint64_t bits = reinterpret_bits<bits_type>(value);
const std::uint64_t E = bits >> (kPrecision - 1);
const std::uint64_t F = bits & (kHiddenBit - 1);
const bool is_denormal = E == 0;
const diyfp v = is_denormal ?
diyfp(F, kMinExp) :
diyfp(F + kHiddenBit, static_cast<int>(E) - kBias);
// Compute the boundaries m- and m+ of the floating-point value
// v = f * 2^e.
//
// Determine v- and v+, the floating-point predecessor and successor if v,
// respectively.
//
// v- = v - 2^e if f != 2^(p-1) or e == e_min (A)
// = v - 2^(e-1) if f == 2^(p-1) and e > e_min (B)
//
// v+ = v + 2^e
//
// Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_
// between m- and m+ round to v, regardless of how the input rounding
// algorithm breaks ties.
//
// ---+-------------+-------------+-------------+-------------+--- (A)
// v- m- v m+ v+
//
// -----------------+------+------+-------------+-------------+--- (B)
// v- m- v m+ v+
const bool lower_boundary_is_closer = F == 0 && E > 1;
const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1);
const diyfp m_minus = lower_boundary_is_closer ?
diyfp(4 * v.f - 1, v.e - 2) // (B)
:
diyfp(2 * v.f - 1, v.e - 1); // (A)
// Determine the normalized w+ = m+.
const diyfp w_plus = diyfp::normalize(m_plus);
// Determine w- = m- such that e_(w-) = e_(w+).
const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e);
return { diyfp::normalize(v), w_minus, w_plus };
}
// Given normalized diyfp w, Grisu needs to find a (normalized) cached
// power-of-ten c, such that the exponent of the product c * w = f * 2^e lies
// within a certain range [alpha, gamma] (Definition 3.2 from [1])
//
// alpha <= e = e_c + e_w + q <= gamma
//
// or
//
// f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q
// <= f_c * f_w * 2^gamma
//
// Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies
//
// 2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma
//
// or
//
// 2^(q - 2 + alpha) <= c * w < 2^(q + gamma)
//
// The choice of (alpha,gamma) determines the size of the table and the form of
// the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well
// in practice:
//
// The idea is to cut the number c * w = f * 2^e into two parts, which can be
// processed independently: An integral part p1, and a fractional part p2:
//
// f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e
// = (f div 2^-e) + (f mod 2^-e) * 2^e
// = p1 + p2 * 2^e
//
// The conversion of p1 into decimal form requires a series of divisions and
// modulos by (a power of) 10. These operations are faster for 32-bit than for
// 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be
// achieved by choosing
//
// -e >= 32 or e <= -32 := gamma
//
// In order to convert the fractional part
//
// p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ...
//
// into decimal form, the fraction is repeatedly multiplied by 10 and the digits
// d[-i] are extracted in order:
//
// (10 * p2) div 2^-e = d[-1]
// (10 * p2) mod 2^-e = d[-2] / 10^1 + ...
//
// The multiplication by 10 must not overflow. It is sufficient to choose
//
// 10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64.
//
// Since p2 = f mod 2^-e < 2^-e,
//
// -e <= 60 or e >= -60 := alpha
constexpr int kAlpha = -60;
constexpr int kGamma = -32;
struct cached_power // c = f * 2^e ~= 10^k
{
std::uint64_t f;
int e;
int k;
};
/*!
For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached
power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c
satisfies (Definition 3.2 from [1])
alpha <= e_c + e + q <= gamma.
*/
inline cached_power get_cached_power_for_binary_exponent(int e)
{
// Now
//
// alpha <= e_c + e + q <= gamma (1)
// ==> f_c * 2^alpha <= c * 2^e * 2^q
//
// and since the c's are normalized, 2^(q-1) <= f_c,
//
// ==> 2^(q - 1 + alpha) <= c * 2^(e + q)
// ==> 2^(alpha - e - 1) <= c
//
// If c were an exact power of ten, i.e. c = 10^k, one may determine k as
//
// k = ceil( log_10( 2^(alpha - e - 1) ) )
// = ceil( (alpha - e - 1) * log_10(2) )
//
// From the paper:
// "In theory the result of the procedure could be wrong since c is rounded,
// and the computation itself is approximated [...]. In practice, however,
// this simple function is sufficient."
//
// For IEEE double precision floating-point numbers converted into
// normalized diyfp's w = f * 2^e, with q = 64,
//
// e >= -1022 (min IEEE exponent)
// -52 (p - 1)
// -52 (p - 1, possibly normalize denormal IEEE numbers)
// -11 (normalize the diyfp)
// = -1137
//
// and
//
// e <= +1023 (max IEEE exponent)
// -52 (p - 1)
// -11 (normalize the diyfp)
// = 960
//
// This binary exponent range [-1137,960] results in a decimal exponent
// range [-307,324]. One does not need to store a cached power for each
// k in this range. For each such k it suffices to find a cached power
// such that the exponent of the product lies in [alpha,gamma].
// This implies that the difference of the decimal exponents of adjacent
// table entries must be less than or equal to
//
// floor( (gamma - alpha) * log_10(2) ) = 8.
//
// (A smaller distance gamma-alpha would require a larger table.)
// NB:
// Actually this function returns c, such that -60 <= e_c + e + 64 <= -34.
constexpr int kCachedPowersMinDecExp = -300;
constexpr int kCachedPowersDecStep = 8;
static constexpr std::array<cached_power, 79> kCachedPowers = { {
{ 0xAB70FE17C79AC6CA, -1060, -300 }, { 0xFF77B1FCBEBCDC4F, -1034, -292 },
{ 0xBE5691EF416BD60C, -1007, -284 }, { 0x8DD01FAD907FFC3C, -980, -276 },
{ 0xD3515C2831559A83, -954, -268 }, { 0x9D71AC8FADA6C9B5, -927, -260 },
{ 0xEA9C227723EE8BCB, -901, -252 }, { 0xAECC49914078536D, -874, -244 },
{ 0x823C12795DB6CE57, -847, -236 }, { 0xC21094364DFB5637, -821, -228 },
{ 0x9096EA6F3848984F, -794, -220 }, { 0xD77485CB25823AC7, -768, -212 },
{ 0xA086CFCD97BF97F4, -741, -204 }, { 0xEF340A98172AACE5, -715, -196 },
{ 0xB23867FB2A35B28E, -688, -188 }, { 0x84C8D4DFD2C63F3B, -661, -180 },
{ 0xC5DD44271AD3CDBA, -635, -172 }, { 0x936B9FCEBB25C996, -608, -164 },
{ 0xDBAC6C247D62A584, -582, -156 }, { 0xA3AB66580D5FDAF6, -555, -148 },
{ 0xF3E2F893DEC3F126, -529, -140 }, { 0xB5B5ADA8AAFF80B8, -502, -132 },
{ 0x87625F056C7C4A8B, -475, -124 }, { 0xC9BCFF6034C13053, -449, -116 },
{ 0x964E858C91BA2655, -422, -108 }, { 0xDFF9772470297EBD, -396, -100 },
{ 0xA6DFBD9FB8E5B88F, -369, -92 }, { 0xF8A95FCF88747D94, -343, -84 },
{ 0xB94470938FA89BCF, -316, -76 }, { 0x8A08F0F8BF0F156B, -289, -68 },
{ 0xCDB02555653131B6, -263, -60 }, { 0x993FE2C6D07B7FAC, -236, -52 },
{ 0xE45C10C42A2B3B06, -210, -44 }, { 0xAA242499697392D3, -183, -36 },
{ 0xFD87B5F28300CA0E, -157, -28 }, { 0xBCE5086492111AEB, -130, -20 },
{ 0x8CBCCC096F5088CC, -103, -12 }, { 0xD1B71758E219652C, -77, -4 },
{ 0x9C40000000000000, -50, 4 }, { 0xE8D4A51000000000, -24, 12 },
{ 0xAD78EBC5AC620000, 3, 20 }, { 0x813F3978F8940984, 30, 28 },
{ 0xC097CE7BC90715B3, 56, 36 }, { 0x8F7E32CE7BEA5C70, 83, 44 },
{ 0xD5D238A4ABE98068, 109, 52 }, { 0x9F4F2726179A2245, 136, 60 },
{ 0xED63A231D4C4FB27, 162, 68 }, { 0xB0DE65388CC8ADA8, 189, 76 },
{ 0x83C7088E1AAB65DB, 216, 84 }, { 0xC45D1DF942711D9A, 242, 92 },
{ 0x924D692CA61BE758, 269, 100 }, { 0xDA01EE641A708DEA, 295, 108 },
{ 0xA26DA3999AEF774A, 322, 116 }, { 0xF209787BB47D6B85, 348, 124 },
{ 0xB454E4A179DD1877, 375, 132 }, { 0x865B86925B9BC5C2, 402, 140 },
{ 0xC83553C5C8965D3D, 428, 148 }, { 0x952AB45CFA97A0B3, 455, 156 },
{ 0xDE469FBD99A05FE3, 481, 164 }, { 0xA59BC234DB398C25, 508, 172 },
{ 0xF6C69A72A3989F5C, 534, 180 }, { 0xB7DCBF5354E9BECE, 561, 188 },
{ 0x88FCF317F22241E2, 588, 196 }, { 0xCC20CE9BD35C78A5, 614, 204 },
{ 0x98165AF37B2153DF, 641, 212 }, { 0xE2A0B5DC971F303A, 667, 220 },
{ 0xA8D9D1535CE3B396, 694, 228 }, { 0xFB9B7CD9A4A7443C, 720, 236 },
{ 0xBB764C4CA7A44410, 747, 244 }, { 0x8BAB8EEFB6409C1A, 774, 252 },
{ 0xD01FEF10A657842C, 800, 260 }, { 0x9B10A4E5E9913129, 827, 268 },
{ 0xE7109BFBA19C0C9D, 853, 276 }, { 0xAC2820D9623BF429, 880, 284 },
{ 0x80444B5E7AA7CF85, 907, 292 }, { 0xBF21E44003ACDD2D, 933, 300 },
{ 0x8E679C2F5E44FF8F, 960, 308 }, { 0xD433179D9C8CB841, 986, 316 },
{ 0x9E19DB92B4E31BA9, 1013, 324 },
} };
// This computation gives exactly the same results for k as
// k = ceil((kAlpha - e - 1) * 0.30102999566398114)
// for |e| <= 1500, but doesn't require floating-point operations.
// NB: log_10(2) ~= 78913 / 2^18
const int f = kAlpha - e - 1;
const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0);
const int index =
(-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) /
kCachedPowersDecStep;
const cached_power cached = kCachedPowers[static_cast<std::size_t>(index)];
return cached;
}
/*!
For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k.
For n == 0, returns 1 and sets pow10 := 1.
*/
inline int find_largest_pow10(const std::uint32_t n, std::uint32_t& pow10)
{
// LCOV_EXCL_START
if (n >= 1000000000)
{
pow10 = 1000000000;
return 10;
}
// LCOV_EXCL_STOP
else if (n >= 100000000)
{
pow10 = 100000000;
return 9;
}
else if (n >= 10000000)
{
pow10 = 10000000;
return 8;
}
else if (n >= 1000000)
{
pow10 = 1000000;
return 7;
}
else if (n >= 100000)
{
pow10 = 100000;
return 6;
}
else if (n >= 10000)
{
pow10 = 10000;
return 5;
}
else if (n >= 1000)
{
pow10 = 1000;
return 4;
}
else if (n >= 100)
{
pow10 = 100;
return 3;
}
else if (n >= 10)
{
pow10 = 10;
return 2;
}
else
{
pow10 = 1;
return 1;
}
}
inline void grisu2_round(
char* buf, int len, std::uint64_t dist, std::uint64_t delta,
std::uint64_t rest, std::uint64_t ten_k)
{
// <--------------------------- delta ---->
// <---- dist --------->
// --------------[------------------+-------------------]--------------
// M- w M+
//
// ten_k
// <------>
// <---- rest ---->
// --------------[------------------+----+--------------]--------------
// w V
// = buf * 10^k
//
// ten_k represents a unit-in-the-last-place in the decimal representation
// stored in buf.
// Decrement buf by ten_k while this takes buf closer to w.
// The tests are written in this order to avoid overflow in unsigned
// integer arithmetic.
while (rest < dist && delta - rest >= ten_k &&
(rest + ten_k < dist || dist - rest > rest + ten_k - dist))
{
buf[len - 1]--;
rest += ten_k;
}
}
/*!
Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+.
M- and M+ must be normalized and share the same exponent -60 <= e <= -32.
*/
inline bool grisu2_digit_gen(
char* buffer, char* last, int& length, int& decimal_exponent, diyfp M_minus, diyfp w,
diyfp M_plus)
{
static_assert(kAlpha >= -60, "internal error");
static_assert(kGamma <= -32, "internal error");
const int max_length = static_cast<int>(last - buffer);
// Generates the digits (and the exponent) of a decimal floating-point
// number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's
// w, M- and M+ share the same exponent e, which satisfies alpha <= e <=
// gamma.
//
// <--------------------------- delta ---->
// <---- dist --------->
// --------------[------------------+-------------------]--------------
// M- w M+
//
// Grisu2 generates the digits of M+ from left to right and stops as soon as
// V is in [M-,M+].
std::uint64_t delta =
diyfp::sub(M_plus, M_minus)
.f; // (significand of (M+ - M-), implicit exponent is e)
std::uint64_t dist =
diyfp::sub(M_plus, w)
.f; // (significand of (M+ - w ), implicit exponent is e)
// Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0):
//
// M+ = f * 2^e
// = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e
// = ((p1 ) * 2^-e + (p2 )) * 2^e
// = p1 + p2 * 2^e
const diyfp one(std::uint64_t { 1 } << -M_plus.e, M_plus.e);
auto p1 = static_cast<std::uint32_t>(
M_plus.f >>
-one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.)
std::uint64_t p2 = M_plus.f & (one.f - 1); // p2 = f mod 2^-e
// 1)
//
// Generate the digits of the integral part p1 = d[n-1]...d[1]d[0]
std::uint32_t pow10;
const int k = find_largest_pow10(p1, pow10);
// 10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1)
//
// p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1))
// = (d[k-1] ) * 10^(k-1) + (p1 mod 10^(k-1))
//
// M+ = p1 + p2 * 2^e
// = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1)) + p2 * 2^e
// = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e
// = d[k-1] * 10^(k-1) + ( rest) * 2^e
//
// Now generate the digits d[n] of p1 from left to right (n = k-1,...,0)
//
// p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0]
//
// but stop as soon as
//
// rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e
int n = k;
while (n > 0)
{
// Check that we are able to write the next symbol into the buffer
if (length >= max_length)
return false;
// Invariants:
// M+ = buffer * 10^n + (p1 + p2 * 2^e) (buffer = 0 for n = k)
// pow10 = 10^(n-1) <= p1 < 10^n
//
const std::uint32_t d = p1 / pow10; // d = p1 div 10^(n-1)
const std::uint32_t r = p1 % pow10; // r = p1 mod 10^(n-1)
//
// M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e
// = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e)
//
buffer[length++] =
static_cast<char>('0' + d); // buffer := buffer * 10 + d
//
// M+ = buffer * 10^(n-1) + (r + p2 * 2^e)
//
p1 = r;
n--;
//
// M+ = buffer * 10^n + (p1 + p2 * 2^e)
// pow10 = 10^n
//
// Now check if enough digits have been generated.
// Compute
//
// p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e
//
// Note:
// Since rest and delta share the same exponent e, it suffices to
// compare the significands.
const std::uint64_t rest = (std::uint64_t { p1 } << -one.e) + p2;
if (rest <= delta)
{
// V = buffer * 10^n, with M- <= V <= M+.
decimal_exponent += n;
// We may now just stop. But instead look if the buffer could be
// decremented to bring V closer to w.
//
// pow10 = 10^n is now 1 ulp in the decimal representation V.
// The rounding procedure works with diyfp's with an implicit
// exponent of e.
//
// 10^n = (10^n * 2^-e) * 2^e = ulp * 2^e
//
const std::uint64_t ten_n = std::uint64_t { pow10 } << -one.e;
grisu2_round(buffer, length, dist, delta, rest, ten_n);
return true;
}
pow10 /= 10;
//
// pow10 = 10^(n-1) <= p1 < 10^n
// Invariants restored.
}
// 2)
//
// The digits of the integral part have been generated:
//
// M+ = d[k-1]...d[1]d[0] + p2 * 2^e
// = buffer + p2 * 2^e
//
// Now generate the digits of the fractional part p2 * 2^e.
//
// Note:
// No decimal point is generated: the exponent is adjusted instead.
//
// p2 actually represents the fraction
//
// p2 * 2^e
// = p2 / 2^-e
// = d[-1] / 10^1 + d[-2] / 10^2 + ...
//
// Now generate the digits d[-m] of p1 from left to right (m = 1,2,...)
//
// p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m
// + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...)
//
// using
//
// 10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e)
// = ( d) * 2^-e + ( r)
//
// or
// 10^m * p2 * 2^e = d + r * 2^e
//
// i.e.
//
// M+ = buffer + p2 * 2^e
// = buffer + 10^-m * (d + r * 2^e)
// = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e
//
// and stop as soon as 10^-m * r * 2^e <= delta * 2^e
int m = 0;
for (;;)
{
// Check that we are able to write the next symbol into the buffer
if (length >= max_length)
return false;
// Invariant:
// M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 +
// ...)
// * 2^e
// = buffer * 10^-m + 10^-m * (p2 )
// * 2^e = buffer * 10^-m + 10^-m * (1/10 * (10 * p2) ) * 2^e =
// buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e +
// (10*p2 mod 2^-e)) * 2^e
//
p2 *= 10;
const std::uint64_t d = p2 >> -one.e; // d = (10 * p2) div 2^-e
const std::uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e
//
// M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e
// = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e))
// = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e
//
buffer[length++] =
static_cast<char>('0' + d); // buffer := buffer * 10 + d
//
// M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e
//
p2 = r;
m++;
//
// M+ = buffer * 10^-m + 10^-m * p2 * 2^e
// Invariant restored.
// Check if enough digits have been generated.
//
// 10^-m * p2 * 2^e <= delta * 2^e
// p2 * 2^e <= 10^m * delta * 2^e
// p2 <= 10^m * delta
delta *= 10;
dist *= 10;
if (p2 <= delta)
{
break;
}
}
// V = buffer * 10^-m, with M- <= V <= M+.
decimal_exponent -= m;
// 1 ulp in the decimal representation is now 10^-m.
// Since delta and dist are now scaled by 10^m, we need to do the
// same with ulp in order to keep the units in sync.
//
// 10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e
//
const std::uint64_t ten_m = one.f;
grisu2_round(buffer, length, dist, delta, p2, ten_m);
// By construction this algorithm generates the shortest possible decimal
// number (Loitsch, Theorem 6.2) which rounds back to w.
// For an input number of precision p, at least
//
// N = 1 + ceil(p * log_10(2))
//
// decimal digits are sufficient to identify all binary floating-point
// numbers (Matula, "In-and-Out conversions").
// This implies that the algorithm does not produce more than N decimal
// digits.
//
// N = 17 for p = 53 (IEEE double precision)
// N = 9 for p = 24 (IEEE single precision)
return true;
}
/*!
v = buf * 10^decimal_exponent
len is the length of the buffer (number of decimal digits)
The buffer must be large enough, i.e. >= max_digits10.
*/
inline bool grisu2(
char* buf, char* last, int& len, int& decimal_exponent, diyfp m_minus, diyfp v,
diyfp m_plus)
{
// --------(-----------------------+-----------------------)-------- (A)
// m- v m+
//
// --------------------(-----------+-----------------------)-------- (B)
// m- v m+
//
// First scale v (and m- and m+) such that the exponent is in the range
// [alpha, gamma].
const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e);
const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k
// The exponent of the products is = v.e + c_minus_k.e + q and is in the
// range [alpha,gamma]
const diyfp w = diyfp::mul(v, c_minus_k);
const diyfp w_minus = diyfp::mul(m_minus, c_minus_k);
const diyfp w_plus = diyfp::mul(m_plus, c_minus_k);
// ----(---+---)---------------(---+---)---------------(---+---)----
// w- w w+
// = c*m- = c*v = c*m+
//
// diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and
// w+ are now off by a small amount.
// In fact:
//
// w - v * 10^k < 1 ulp
//
// To account for this inaccuracy, add resp. subtract 1 ulp.
//
// --------+---[---------------(---+---)---------------]---+--------
// w- M- w M+ w+
//
// Now any number in [M-, M+] (bounds included) will round to w when input,
// regardless of how the input rounding algorithm breaks ties.
//
// And digit_gen generates the shortest possible such number in [M-, M+].
// Note that this does not mean that Grisu2 always generates the shortest
// possible number in the interval (m-, m+).
const diyfp M_minus(w_minus.f + 1, w_minus.e);
const diyfp M_plus(w_plus.f - 1, w_plus.e);
decimal_exponent = -cached.k; // = -(-k) = k
return grisu2_digit_gen(buf, last, len, decimal_exponent, M_minus, w, M_plus);
}
/*!
v = buf * 10^decimal_exponent
len is the length of the buffer (number of decimal digits)
The buffer must be large enough, i.e. >= max_digits10.
*/
template <typename FloatType>
bool grisu2(char* buf, char* last, int& len, int& decimal_exponent, FloatType value)
{
static_assert(
diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3,
"internal error: not enough precision");
// If the neighbors (and boundaries) of 'value' are always computed for
// double-precision numbers, all float's can be recovered using strtod (and
// strtof). However, the resulting decimal representations are not exactly
// "short".
//
// The documentation for 'std::to_chars'
// (https://en.cppreference.com/w/cpp/utility/to_chars) says "value is
// converted to a string as if by std::sprintf in the default ("C") locale"
// and since sprintf promotes float's to double's, I think this is exactly
// what 'std::to_chars' does. On the other hand, the documentation for
// 'std::to_chars' requires that "parsing the representation using the
// corresponding std::from_chars function recovers value exactly". That
// indicates that single precision floating-point numbers should be recovered
// using 'std::strtof'.
//
// NB: If the neighbors are computed for single-precision numbers, there is a
// single float
// (7.0385307e-26f) which can't be recovered using strtod. The resulting
// double precision value is off by 1 ulp.
#if 0
const boundaries w = compute_boundaries(static_cast<double>(value));
#else
const boundaries w = compute_boundaries(value);
#endif
return grisu2(buf, last, len, decimal_exponent, w.minus, w.w, w.plus);
}
/*!
@brief appends a decimal representation of e to buf
@return a pointer to the element following the exponent.
@pre -1000 < e < 1000
*/
inline ToCharsResult append_exponent(char* buf, char* last, int e)
{
if (buf >= last)
return { last, std::errc::value_too_large };
if (e < 0)
{
e = -e;
*buf++ = '-';
}
else
{
*buf++ = '+';
}
auto k = static_cast<std::uint32_t>(e);
const int requiredSymbolsCount = k < 100 ? 2 : 3;
char* requiredLast = buf + requiredSymbolsCount + 1;
if (requiredLast > last)
return { last, std::errc::value_too_large };
if (k < 10)
{
// Always print at least two digits in the exponent.
// This is for compatibility with printf("%g").
*buf++ = '0';
*buf++ = static_cast<char>('0' + k);
}
else if (k < 100)
{
*buf++ = static_cast<char>('0' + k / 10);
k %= 10;
*buf++ = static_cast<char>('0' + k);
}
else
{
*buf++ = static_cast<char>('0' + k / 100);
k %= 100;
*buf++ = static_cast<char>('0' + k / 10);
k %= 10;
*buf++ = static_cast<char>('0' + k);
}
return { buf, std::errc() };
}
/*!
@brief prettify v = buf * 10^decimal_exponent
If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point
notation. Otherwise it will be printed in exponential notation.
@pre min_exp < 0
@pre max_exp > 0
*/
inline ToCharsResult format_buffer(
char* buf, char* last, int len, int decimal_exponent, int min_exp, int max_exp)
{
const int k = len;
const int n = len + decimal_exponent;
// v = buf * 10^(n-k)
// k is the length of the buffer (number of decimal digits)
// n is the position of the decimal point relative to the start of the
// buffer.
if (k <= n && n <= max_exp)
{
char* requiredLast = buf + (static_cast<size_t>(n));
if (requiredLast > last)
return { last, std::errc::value_too_large };
// digits[000]
// len <= max_exp + 2
std::memset(
buf + k, '0', static_cast<size_t>(n) - static_cast<size_t>(k));
// Make it look like a floating-point number (#362, #378)
// buf[n + 0] = '.';
// buf[n + 1] = '0';
return { requiredLast, std::errc() };
}
if (0 < n && n <= max_exp)
{
char* requiredLast = buf + (static_cast<size_t>(k) + 1U);
if (requiredLast > last)
return { last, std::errc::value_too_large };
// dig.its
// len <= max_digits10 + 1
std::memmove(
buf + (static_cast<size_t>(n) + 1), buf + n,
static_cast<size_t>(k) - static_cast<size_t>(n));
buf[n] = '.';
return { requiredLast, std::errc() };
}
if (min_exp < n && n <= 0)
{
char* requiredLast =
buf + (2U + static_cast<size_t>(-n) + static_cast<size_t>(k));
if (requiredLast > last)
return { last, std::errc::value_too_large };
// 0.[000]digits
// len <= 2 + (-min_exp - 1) + max_digits10
std::memmove(
buf + (2 + static_cast<size_t>(-n)), buf, static_cast<size_t>(k));
buf[0] = '0';
buf[1] = '.';
std::memset(buf + 2, '0', static_cast<size_t>(-n));
return { requiredLast, std::errc() };
}
if (k == 1)
{
char* requiredLast = buf + 1;
if (requiredLast > last)
return { last, std::errc::value_too_large };
// dE+123
// len <= 1 + 5
buf += 1;
}
else
{
char* requiredLast = buf + 1 + static_cast<size_t>(k);
if (requiredLast > last)
return { last, std::errc::value_too_large };
// d.igitsE+123
// len <= max_digits10 + 1 + 5
std::memmove(buf + 2, buf + 1, static_cast<size_t>(k) - 1);
buf[1] = '.';
buf += 1 + static_cast<size_t>(k);
}
*buf++ = 'e';
return append_exponent(buf, last, n - 1);
}
} // namespace dtoa_impl
/*!
The format of the resulting decimal representation is similar to printf's %g
format. Returns an iterator pointing past-the-end of the decimal representation.
@note The input number must be finite, i.e. NaN's and Inf's are not supported.
@note The buffer must be large enough.
@note The result is NOT null-terminated.
*/
template<typename T>
ToCharsResult float_to_chars(
char* first, char* last, T value, int digitsAfterDecimalPoint)
{
if (first >= last || first == nullptr)
return { last, std::errc::value_too_large };
if (value == 0)
{
*first++ = '0';
return { first, std::errc() };
}
if (std::signbit(value))
{
value = -value;
*first++ = '-';
}
// Compute v = buffer * 10^decimal_exponent.
// The decimal digits are stored in the buffer, which needs to be interpreted
// as an unsigned decimal integer.
// len is the length of the buffer, i.e. the number of decimal digits.
int len = 0;
int decimal_exponent = 0;
if (!dtoa_impl::grisu2(first, last, len, decimal_exponent, value))
return { last, std::errc::value_too_large };
// Format the buffer like printf("%.*g", prec, value)
const int kMinExp = digitsAfterDecimalPoint < 0 ? -4 : -digitsAfterDecimalPoint;
constexpr int kMaxExp = std::numeric_limits<double>::digits10;
// Audacity specific extension imitating Internat::ToDisplayString
// for a consistent behavior
if (digitsAfterDecimalPoint >= 0)
{
if (len + decimal_exponent > 0 && -decimal_exponent > digitsAfterDecimalPoint)
{
const int difference = digitsAfterDecimalPoint + decimal_exponent;
decimal_exponent = -digitsAfterDecimalPoint;
len += difference;
}
}
return dtoa_impl::format_buffer(
first, last, len, decimal_exponent, kMinExp, kMaxExp);
}
} // namespace internal
STRING_UTILS_API ToCharsResult ToChars(
char* buffer, char* last, float value,
int digitsAfterDecimalPoint) noexcept
{
return internal::float_to_chars(
buffer, last, value, digitsAfterDecimalPoint);
}
STRING_UTILS_API ToCharsResult ToChars(
char* buffer, char* last, double value,
int digitsAfterDecimalPoint) noexcept
{
return internal::float_to_chars(
buffer, last, value, digitsAfterDecimalPoint);
}
ToCharsResult
ToChars(char* buffer, char* last, long long value) noexcept
{
if (buffer >= last || buffer == nullptr)
return { last, std::errc::value_too_large };
if (value < 0)
{
*buffer++ = '-';
value = -value;
}
return ToChars(buffer, last, static_cast<unsigned long long>(value));
}
ToCharsResult ToChars(char* buffer, char* last, unsigned long long value) noexcept
{
if (buffer >= last || buffer == nullptr)
return { last, std::errc::value_too_large };
if (value == 0)
{
*buffer++ = '0';
return { buffer, std::errc() };
}
constexpr size_t safeSize =
std::numeric_limits<unsigned long long>::digits10 + 2;
const size_t bufferSize = static_cast<size_t>(last - buffer);
if (bufferSize >= safeSize)
return { internal::itoa_impl::u64toa_jeaiii(value, buffer), std::errc() };
char tempBuffer[safeSize];
char* tempLast = internal::itoa_impl::u64toa_jeaiii(value, tempBuffer);
const size_t resultSize = static_cast<size_t>(tempLast - tempBuffer);
if (resultSize > bufferSize)
return { last, std::errc::value_too_large };
std::copy(tempBuffer, tempLast, buffer);
return { buffer + resultSize, std::errc() };
}
|