1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
|
/**********************************************************************
Audacity: A Digital Audio Editor
SpectrogramSettings.cpp
Paul Licameli
*******************************************************************//**
\class SpectrogramSettings
\brief Spectrogram settings, either for one track or as defaults.
*//*******************************************************************/
#include "SpectrogramSettings.h"
#include "NumberScale.h"
#include <algorithm>
#include "FFT.h"
#include "Prefs.h"
#include "WaveTrack.h"
#include <cmath>
#include "BasicUI.h"
IntSetting SpectrumMaxFreq{
L"/Spectrum/MaxFreq", 20000 };
namespace {
// Other settings not yet used outside of this file
// To do: migrate these to ChoiceSetting preferences, which will store an
// Identifier instead of a number in the preference file.
IntSetting SpectrumAlgorithm{
L"/Spectrum/Algorithm", 0 }; // Default to Frequencies
IntSetting SpectrumScale{
L"/Spectrum/ScaleType", 2 }; // Default to Mel
IntSetting SpectrumWindowFunction{
L"/Spectrum/WindowType", eWinFuncHann };
BoolSetting SpectrumEnableSelection{
L"/Spectrum/EnableSpectralSelection", true };
IntSetting SpectrumFFTSize{
L"/Spectrum/FFTSize", 2048 };
IntSetting SpectrumFrequencyGain{
L"/Spectrum/FrequencyGain", 0 };
IntSetting SpectrumGain{
L"/Spectrum/Gain", 20 };
BoolSetting SpectrumGrayscale{
L"/Spectrum/Grayscale", false };
IntSetting SpectrumMinFreq{
L"/Spectrum/MinFreq", 0 };
IntSetting SpectrumRange{
L"/Spectrum/Range", 80 };
IntSetting SpectrumZeroPaddingFactor{
L"/Spectrum/ZeroPaddingFactor", 2 };
#ifdef EXPERIMENTAL_FIND_NOTES
BoolSetting SpectrumFindNotes{
L"/Spectrum/FFTFindNotes", false };
DoubleSetting SpectrumFindNotesMinA{
L"/Spectrum/FindNotesMinA", -30.0 };
IntSetting SpectrumFindNotesN{
L"/Spectrum/FindNotesN", 5 };
BoolSetting SpectrumFindNotesQuantize{
L"/Spectrum/FindNotesQuantize", false };
#endif //EXPERIMENTAL_FIND_NOTES
#ifdef EXPERIMENTAL_FFT_Y_GRID
BoolSetting SpectrumYGrid{
L"/Spectrum/FFTYGrid", false};
#endif
}
SpectrogramSettings::Globals::Globals()
{
LoadPrefs();
}
void SpectrogramSettings::Globals::SavePrefs()
{
#ifdef SPECTRAL_SELECTION_GLOBAL_SWITCH
SpectrumEnableSelection.Write(spectralSelection);
#endif
}
void SpectrogramSettings::Globals::LoadPrefs()
{
#ifdef SPECTRAL_SELECTION_GLOBAL_SWITCH
spectralSelection = SpectrumEnableSelection.Read();
#endif
}
SpectrogramSettings::Globals
&SpectrogramSettings::Globals::Get()
{
static Globals instance;
return instance;
}
static const ChannelGroup::Attachments::RegisteredFactory
key1{ [](auto &) { return nullptr; } };
SpectrogramSettings &SpectrogramSettings::Get(const WaveTrack &track)
{
auto &mutTrack = const_cast<WaveTrack&>(track);
auto pSettings = mutTrack.Attachments::Find<SpectrogramSettings>(key1);
if (pSettings)
return *pSettings;
else
return SpectrogramSettings::defaults();
}
SpectrogramSettings &SpectrogramSettings::Get(const WaveChannel &channel)
{
return Get(channel.GetTrack());
}
SpectrogramSettings &SpectrogramSettings::Own(WaveChannel &wc)
{
auto &track = wc.GetTrack();
auto pSettings = track.Attachments::Find<SpectrogramSettings>(key1);
if (!pSettings) {
auto uSettings = std::make_unique<SpectrogramSettings>();
pSettings = uSettings.get();
track.Attachments::Assign(key1, std::move(uSettings));
}
return *pSettings;
}
void SpectrogramSettings::Reset(WaveChannel &wc)
{
wc.GetTrack().Attachments::Assign(key1, nullptr);
}
SpectrogramSettings::SpectrogramSettings()
{
LoadPrefs();
}
SpectrogramSettings::SpectrogramSettings(const SpectrogramSettings &other)
: minFreq(other.minFreq)
, maxFreq(other.maxFreq)
, range(other.range)
, gain(other.gain)
, frequencyGain(other.frequencyGain)
, windowType(other.windowType)
, windowSize(other.windowSize)
, zeroPaddingFactor(other.zeroPaddingFactor)
, colorScheme(other.colorScheme)
, scaleType(other.scaleType)
#ifndef SPECTRAL_SELECTION_GLOBAL_SWITCH
, spectralSelection(other.spectralSelection)
#endif
, algorithm(other.algorithm)
#ifdef EXPERIMENTAL_FFT_Y_GRID
, fftYGrid(other.fftYGrid)
#endif
#ifdef EXPERIMENTAL_FIND_NOTES
, fftFindNotes(other.fftFindNotes)
, findNotesMinA(other.findNotesMinA)
, numberOfMaxima(other.numberOfMaxima)
, findNotesQuantize(other.findNotesQuantize)
#endif
// Do not copy these!
, hFFT{}
, window{}
, waveletsRe{}
, waveletsIm{}
, waveletSizes{}
, waveletMaxLength(0)
, tWindow{}
, dWindow{}
{
}
SpectrogramSettings &SpectrogramSettings::operator= (const SpectrogramSettings &other)
{
if (this != &other) {
minFreq = other.minFreq;
maxFreq = other.maxFreq;
range = other.range;
gain = other.gain;
frequencyGain = other.frequencyGain;
windowType = other.windowType;
windowSize = other.windowSize;
zeroPaddingFactor = other.zeroPaddingFactor;
colorScheme = other.colorScheme;
scaleType = other.scaleType;
#ifndef SPECTRAL_SELECTION_GLOBAL_SWITCH
spectralSelection = other.spectralSelection;
#endif
algorithm = other.algorithm;
#ifdef EXPERIMENTAL_FFT_Y_GRID
fftYGrid = other.fftYGrid;
#endif
#ifdef EXPERIMENTAL_FIND_NOTES
fftFindNotes = other.fftFindNotes;
findNotesMinA = other.findNotesMinA;
numberOfMaxima = other.numberOfMaxima;
findNotesQuantize = other.findNotesQuantize;
#endif
// Invalidate the caches
DestroyWindows();
}
return *this;
}
SpectrogramSettings& SpectrogramSettings::defaults()
{
static SpectrogramSettings instance;
return instance;
}
//static
const EnumValueSymbols &SpectrogramSettings::GetScaleNames()
{
static const EnumValueSymbols result{
// Keep in correspondence with enum SpectrogramSettings::ScaleType:
XO("Linear") ,
XO("Logarithmic") ,
/* i18n-hint: The name of a frequency scale in psychoacoustics */
XO("Mel") ,
/* i18n-hint: The name of a frequency scale in psychoacoustics, named for Heinrich Barkhausen */
XO("Bark") ,
/* i18n-hint: The name of a frequency scale in psychoacoustics, abbreviates Equivalent Rectangular Bandwidth */
XO("ERB") ,
/* i18n-hint: Time units, that is Period = 1 / Frequency */
XO("Period") ,
};
return result;
}
//static
const EnumValueSymbols &SpectrogramSettings::GetColorSchemeNames()
{
static const EnumValueSymbols result{
// Keep in correspondence with enum SpectrogramSettings::ColorScheme:
/* i18n-hint: New color scheme for spectrograms, Roseus is proper name of the color scheme */
{ wxT("SpecColorNew"), XC("Color (Roseus)", "spectrum prefs") },
/* i18n-hint: Classic color scheme(from theme) for spectrograms */
{ wxT("SpecColorTheme"), XC("Color (classic)", "spectrum prefs") },
/* i18n-hint: Grayscale color scheme for spectrograms */
{ wxT("SpecGrayscale"), XC("Grayscale", "spectrum prefs") },
/* i18n-hint: Inverse grayscale color scheme for spectrograms */
{ wxT("SpecInvGrayscale"), XC("Inverse grayscale", "spectrum prefs") },
};
wxASSERT(csNumColorScheme == result.size());
return result;
}
void SpectrogramSettings::ColorSchemeEnumSetting::Migrate(wxString &value)
{
// Migrate old grayscale option to Color scheme choice
bool isGrayscale = SpectrumGrayscale.Read();
if (isGrayscale && !gPrefs->Read(wxT("/Spectrum/ColorScheme"), &value)) {
value = GetColorSchemeNames().at(csGrayscale).Internal();
Write(value);
gPrefs->Flush();
}
}
SpectrogramSettings::ColorSchemeEnumSetting SpectrogramSettings::colorSchemeSetting{
wxT("/Spectrum/ColorScheme"),
GetColorSchemeNames(),
csColorNew, // default to Color(New)
{ csColorNew, csColorTheme, csGrayscale, csInvGrayscale },
};
//static
const TranslatableStrings &SpectrogramSettings::GetAlgorithmNames()
{
static const TranslatableStrings results{
// Keep in correspondence with enum SpectrogramSettings::Algorithm:
XO("Frequencies") ,
/* i18n-hint: the Reassignment algorithm for spectrograms */
XO("Reassignment") ,
/* i18n-hint: EAC abbreviates "Enhanced Autocorrelation" */
XO("Pitch (EAC)") ,
#ifdef WAVELET
XO("Wavelet (1/6 Octave Hann)") ,
#endif
};
return results;
}
bool SpectrogramSettings::Validate(bool quiet)
{
if (!quiet &&
maxFreq < 100) {
BasicUI::ShowMessageBox( XO("Maximum frequency must be 100 Hz or above") );
return false;
}
else
maxFreq = std::max(100, maxFreq);
if (!quiet &&
minFreq < 0) {
BasicUI::ShowMessageBox( XO("Minimum frequency must be at least 0 Hz") );
return false;
}
else
minFreq = std::max(0, minFreq);
if (!quiet &&
maxFreq <= minFreq) {
BasicUI::ShowMessageBox( XO(
"Minimum frequency must be less than maximum frequency") );
return false;
}
else
maxFreq = std::max(1 + minFreq, maxFreq);
if (!quiet &&
range <= 0) {
BasicUI::ShowMessageBox( XO("The range must be at least 1 dB") );
return false;
}
else
range = std::max(1, range);
if (!quiet &&
frequencyGain < 0) {
BasicUI::ShowMessageBox( XO("The frequency gain cannot be negative") );
return false;
}
else if (!quiet &&
frequencyGain > 60) {
BasicUI::ShowMessageBox( XO(
"The frequency gain must be no more than 60 dB/dec") );
return false;
}
else
frequencyGain =
std::max(0, std::min(60, frequencyGain));
// The rest are controlled by drop-down menus so they can't go wrong
// in the Preferences dialog, but we also come here after reading fom saved
// preference files, which could be or from future versions. Validate quietly.
windowType =
std::max(0, std::min(NumWindowFuncs() - 1, windowType));
scaleType =
ScaleType(std::max(0,
std::min((int)(SpectrogramSettings::stNumScaleTypes) - 1,
(int)(scaleType))));
colorScheme = ColorScheme(
std::max(0, std::min<int>(csNumColorScheme-1, colorScheme))
);
algorithm = Algorithm(
std::max(0, std::min((int)(algNumAlgorithms) - 1, (int)(algorithm)))
);
ConvertToEnumeratedWindowSizes();
ConvertToActualWindowSizes();
return true;
}
void SpectrogramSettings::LoadPrefs()
{
minFreq = SpectrumMinFreq.Read();
maxFreq = SpectrumMaxFreq.Read();
range = SpectrumRange.Read();
gain = SpectrumGain.Read();
frequencyGain = SpectrumFrequencyGain.Read();
windowSize = SpectrumFFTSize.Read();
zeroPaddingFactor = SpectrumZeroPaddingFactor.Read();
windowType = SpectrumWindowFunction.Read();
colorScheme = colorSchemeSetting.ReadEnum();
scaleType = static_cast<ScaleType>(SpectrumScale.Read());
#ifndef SPECTRAL_SELECTION_GLOBAL_SWITCH
spectralSelection = SpectrumEnableSelection.Read();
#endif
algorithm = static_cast<Algorithm>(SpectrumAlgorithm.Read());
#ifdef EXPERIMENTAL_FFT_Y_GRID
fftYGrid = SpectrumYGrid.Read();
#endif //EXPERIMENTAL_FFT_Y_GRID
#ifdef EXPERIMENTAL_FIND_NOTES
fftFindNotes = SpectrumFindNotes.Read();
findNotesMinA = SpectrumFindNotesMinA.Read();
numberOfMaxima = SpectrumFindNotesN.Read();
findNotesQuantize = SpectrumFindNotesQuantize.Read();
#endif //EXPERIMENTAL_FIND_NOTES
// Enforce legal values
Validate(true);
InvalidateCaches();
}
void SpectrogramSettings::SavePrefs()
{
SpectrumMinFreq.Write(minFreq);
SpectrumMaxFreq.Write(maxFreq);
// Nothing wrote these. They only varied from the linear scale bounds in-session. -- PRL
// gPrefs->Write(wxT("/SpectrumLog/MaxFreq"), logMinFreq);
// gPrefs->Write(wxT("/SpectrumLog/MinFreq"), logMaxFreq);
SpectrumRange.Write(range);
SpectrumGain.Write(gain);
SpectrumFrequencyGain.Write(frequencyGain);
SpectrumFFTSize.Write(windowSize);
SpectrumZeroPaddingFactor.Write(zeroPaddingFactor);
SpectrumWindowFunction.Write(windowType);
colorSchemeSetting.WriteEnum(colorScheme);
SpectrumScale.Write(static_cast<int>(scaleType));
#ifndef SPECTRAL_SELECTION_GLOBAL_SWITCH
SpectrumEnableSelection.Write(spectralSelection);
#endif
SpectrumAlgorithm.Write(static_cast<int>(algorithm));
#ifdef EXPERIMENTAL_FFT_Y_GRID
SpectrumYGrid.Write(fftYGrid);
#endif //EXPERIMENTAL_FFT_Y_GRID
#ifdef EXPERIMENTAL_FIND_NOTES
SpectrumFindNotes.Write(fftFindNotes);
SpectrumFindNotesMinA.Write(findNotesMinA);
SpectrumFindNotesN.Write(numberOfMaxima);
SpectrumFindNotesQuantize.Write(findNotesQuantize);
#endif //EXPERIMENTAL_FIND_NOTES
}
// This is a temporary hack until SpectrogramSettings gets fully integrated
void SpectrogramSettings::UpdatePrefs()
{
if (minFreq == defaults().minFreq)
minFreq = SpectrumMinFreq.Read();
if (maxFreq == defaults().maxFreq)
maxFreq = SpectrumMaxFreq.Read();
if (range == defaults().range)
range = SpectrumRange.Read();
if (gain == defaults().gain)
gain = SpectrumGain.Read();
if (frequencyGain == defaults().frequencyGain)
frequencyGain = SpectrumFrequencyGain.Read();
if (windowSize == defaults().windowSize)
windowSize = SpectrumFFTSize.Read();
if (zeroPaddingFactor == defaults().zeroPaddingFactor)
zeroPaddingFactor = SpectrumZeroPaddingFactor.Read();
if (windowType == defaults().windowType)
windowType = SpectrumWindowFunction.Read();
if (colorScheme == defaults().colorScheme) {
colorScheme = colorSchemeSetting.ReadEnum();
}
if (scaleType == defaults().scaleType)
scaleType = static_cast<ScaleType>(SpectrumScale.Read());
#ifndef SPECTRAL_SELECTION_GLOBAL_SWITCH
if (spectralSelection == defaults().spectralSelection)
spectralSelection = SpectrumEnableSelection.Read();
#endif
if (algorithm == defaults().algorithm)
algorithm = static_cast<Algorithm>(SpectrumAlgorithm.Read());
#ifdef EXPERIMENTAL_FFT_Y_GRID
if (fftYGrid == defaults().fftYGrid)
fftYGrid = SpectrumYGrid.Read();
#endif //EXPERIMENTAL_FFT_Y_GRID
#ifdef EXPERIMENTAL_FIND_NOTES
if (fftFindNotes == defaults().fftFindNotes)
fftFindNotes = SpectrumFindNotes.Read();
if (findNotesMinA == defaults().findNotesMinA)
findNotesMinA = SpectrumFindNotesMinA.Read();
if (numberOfMaxima == defaults().numberOfMaxima)
numberOfMaxima = SpectrumFindNotesN.Read();
if (findNotesQuantize == defaults().findNotesQuantize)
findNotesQuantize = SpectrumFindNotesQuantize.Read();
#endif //EXPERIMENTAL_FIND_NOTES
// Enforce legal values
Validate(true);
}
void SpectrogramSettings::InvalidateCaches()
{
DestroyWindows();
}
SpectrogramSettings::~SpectrogramSettings()
{
DestroyWindows();
}
auto SpectrogramSettings::Clone() const -> PointerType
{
return std::make_unique<SpectrogramSettings>(*this);
}
void SpectrogramSettings::DestroyWindows()
{
hFFT.reset();
window.reset();
waveletsRe.reset();
waveletsIm.reset();
waveletSizes.reset();
waveletMaxLength = 0;
dWindow.reset();
tWindow.reset();
}
namespace
{
enum { WINDOW, TWINDOW, DWINDOW };
void RecreateWindow(
Floats &window, int which, size_t fftLen,
size_t padding, int windowType, size_t windowSize, double &scale)
{
// Create the requested window function
window = Floats{ fftLen };
size_t ii;
const bool extra = padding > 0;
wxASSERT(windowSize % 2 == 0);
if (extra)
// For windows that do not go to 0 at the edges, this improves symmetry
++windowSize;
const size_t endOfWindow = padding + windowSize;
// Left and right padding
for (ii = 0; ii < padding; ++ii) {
window[ii] = 0.0;
window[fftLen - ii - 1] = 0.0;
}
// Default rectangular window in the middle
for (; ii < endOfWindow; ++ii)
window[ii] = 1.0;
// Overwrite middle as needed
switch (which) {
case WINDOW:
NewWindowFunc(windowType, windowSize, extra, window.get() + padding);
break;
case TWINDOW:
NewWindowFunc(windowType, windowSize, extra, window.get() + padding);
{
for (int jj = padding, multiplier = -(int)windowSize / 2; jj < (int)endOfWindow; ++jj, ++multiplier)
window[jj] *= multiplier;
}
break;
case DWINDOW:
DerivativeOfWindowFunc(windowType, windowSize, extra, window.get() + padding);
break;
default:
wxASSERT(false);
}
// Scale the window function to give 0dB spectrum for 0dB sine tone
if (which == WINDOW) {
scale = 0.0;
for (ii = padding; ii < endOfWindow; ++ii)
scale += window[ii];
if (scale > 0)
scale = 2.0 / scale;
}
for (ii = padding; ii < endOfWindow; ++ii)
window[ii] *= scale;
}
void RecreateWavelet(size_t &size, Floats &waveletRe, Floats &waveletIm, double frequency, size_t bins)
{
assert(frequency >= 0);
assert(frequency <= 0.5);
if (frequency == 0)
{
size = 0;
waveletRe = Floats{};
waveletIm = Floats{};
return;
}
// We will then create a modulated Hann window at the given nominal frequency
// Window length must be chosen such that spectral power bandwidth is 1/6th of an octave
// This bandwidth constraint then in return governs the duration of the hann window
// The RMS Bandwidth of Hann window is 2* 1/T * sqrt(1/3)
// Formula to obtain duration is thus
// RMSBW = 2 * sqrt(1/3) / T
// T = 2 * sqrt(1/3) / RMSBW
// RMSBW = 1/6th octave, ie factor 2^0.16667 = 1.122 between bands
// T = 2 * sqrt(1/3) / (sqrt(1.122) * Fc - Fc / sqrt(1.122)) = 2 * sqrt(1/3) / (sqrt(1.122) - 1/sqrt(1.122) / Fc = 10,02 / Fc
const double BandsPerOctave = 6.0;
const double bwFactor = pow(2, 1.0/BandsPerOctave);
const double durationFactor = 2 * sqrt(1.0/3.0) / (sqrt(bwFactor) - sqrt(1/bwFactor));
const double PI = 4.0 * atan(1);
const double omega = 2 * PI * frequency;
double waveletDurationHalf = 0.5 * durationFactor / frequency; // float number of samples for half-length. Hann enveloped filter will be zero outside range [-waveletDurationHalf; waveletDurationHalf]
size = (int) (waveletDurationHalf); // truncate to integer number of samples. "size" will hold the half-length of the wavelet filter (conjugate symmetry)
if (size > bins)
{
// There is no point in using wavelets that exceed resolution in our frequency array (under sampling, really)
size = 0;
waveletRe = Floats{};
waveletIm = Floats{};
return;
}
waveletRe = Floats{size};
waveletIm = Floats{size};
for (int i = 0; i < size; i++)
{
double relative_dt = i / waveletDurationHalf;
double envelope = (1 + cos(relative_dt * PI)) / (waveletDurationHalf * 2.0); // Normalize for zero gain when doing convolution
waveletRe[i] = envelope * cos(omega * i);
waveletIm[i] = envelope * sin(omega * i);
}
return;
}
}
void SpectrogramSettings::CacheWindows()
{
if (algorithm == algWavelet)
{
if (waveletsRe == NULL || waveletsIm == NULL)
{
size_t num = NBins();
waveletsRe = FloatBuffers {num};
waveletsIm = FloatBuffers {num};
waveletSizes = ArrayOf<size_t> {num};
waveletMaxLength = 0;
double delta = 0.5 / num;
for (int i = 0; i < num; i++)
{
RecreateWavelet(waveletSizes[i], waveletsRe[i], waveletsIm[i], i * delta, num);
if (waveletSizes[i] > waveletMaxLength)
{
waveletMaxLength = waveletSizes[i];
}
}
}
}
else
{
if (hFFT == NULL || window == NULL) {
double scale;
auto factor = ZeroPaddingFactor();
const auto fftLen = WindowSize() * factor;
const auto padding = (WindowSize() * (factor - 1)) / 2;
hFFT = GetFFT(fftLen);
RecreateWindow(window, WINDOW, fftLen, padding, windowType, windowSize, scale);
if (algorithm == algReassignment) {
RecreateWindow(tWindow, TWINDOW, fftLen, padding, windowType, windowSize, scale);
RecreateWindow(dWindow, DWINDOW, fftLen, padding, windowType, windowSize, scale);
}
}
}
}
void SpectrogramSettings::ConvertToEnumeratedWindowSizes()
{
unsigned size;
int logarithm;
logarithm = -LogMinWindowSize;
size = unsigned(windowSize);
while (size > 1)
size >>= 1, ++logarithm;
windowSize = std::max(0, std::min(NumWindowSizes - 1, logarithm));
// Choices for zero padding begin at 1
logarithm = 0;
size = unsigned(zeroPaddingFactor);
while (zeroPaddingFactor > 1)
zeroPaddingFactor >>= 1, ++logarithm;
zeroPaddingFactor = std::max(0,
std::min(LogMaxWindowSize - (windowSize + LogMinWindowSize),
logarithm
));
}
void SpectrogramSettings::ConvertToActualWindowSizes()
{
windowSize = 1 << (windowSize + LogMinWindowSize);
zeroPaddingFactor = 1 << zeroPaddingFactor;
}
float SpectrogramSettings::findBin( float frequency, float binUnit ) const
{
float linearBin = frequency / binUnit;
if (linearBin < 0)
return -1;
else
return linearBin;
}
size_t SpectrogramSettings::GetFFTLength() const
{
//#ifndef EXPERIMENTAL_ZERO_PADDED_SPECTROGRAMS
// return windowSize;
//#else
return windowSize * ((algorithm != algPitchEAC && algorithm != algWavelet) ? zeroPaddingFactor : 1);
//#endif
}
size_t SpectrogramSettings::NBins() const
{
// Omit the Nyquist frequency bin
return GetFFTLength() / 2;
}
NumberScale SpectrogramSettings::GetScale( float minFreqIn, float maxFreqIn ) const
{
NumberScaleType type = nstLinear;
// Don't assume the correspondence of the enums will remain direct in the future.
// Do this switch.
switch (scaleType) {
default:
wxASSERT(false);
case stLinear:
type = nstLinear; break;
case stLogarithmic:
type = nstLogarithmic; break;
case stMel:
type = nstMel; break;
case stBark:
type = nstBark; break;
case stErb:
type = nstErb; break;
case stPeriod:
type = nstPeriod; break;
}
return NumberScale(type, minFreqIn, maxFreqIn);
}
bool SpectrogramSettings::SpectralSelectionEnabled() const
{
#ifdef SPECTRAL_SELECTION_GLOBAL_SWITCH
return Globals::Get().spectralSelection;
#else
return spectralSelection;
#endif
}
static const ChannelGroup::Attachments::RegisteredFactory
key2{ [](auto &) { return std::make_unique<SpectrogramBounds>(); } };
SpectrogramBounds &SpectrogramBounds::Get( WaveTrack &track )
{
return track.Attachments::Get<SpectrogramBounds>(key2);
}
const SpectrogramBounds &SpectrogramBounds::Get(
const WaveTrack &track )
{
return Get(const_cast<WaveTrack&>(track));
}
SpectrogramBounds &SpectrogramBounds::Get(WaveChannel &channel)
{
return Get(channel.GetTrack());
}
const SpectrogramBounds &SpectrogramBounds::Get(const WaveChannel &channel)
{
return Get(const_cast<WaveChannel&>(channel));
}
SpectrogramBounds::~SpectrogramBounds() = default;
auto SpectrogramBounds::Clone() const -> PointerType
{
return std::make_unique<SpectrogramBounds>(*this);
}
void SpectrogramBounds::GetBounds(
const WaveChannel &wc, float &min, float &max) const
{
auto &wt = wc.GetTrack();
const double rate = wt.GetRate();
const auto &settings = SpectrogramSettings::Get(wt);
const auto type = settings.scaleType;
const float top = (rate / 2.);
float bottom;
if (type == SpectrogramSettings::stLinear)
bottom = 0.0f;
else if (type == SpectrogramSettings::stPeriod) {
// special case
const auto half = settings.GetFFTLength() / 2;
// EAC returns no data for below this frequency:
const float bin2 = rate / half;
bottom = bin2;
}
else
// logarithmic, etc.
bottom = 1.0f;
{
float spectrumMax = mSpectrumMax;
if (spectrumMax < 0)
spectrumMax = settings.maxFreq;
if (spectrumMax < 0)
max = top;
else
max = std::clamp(spectrumMax, bottom, top);
}
{
float spectrumMin = mSpectrumMin;
if (spectrumMin < 0)
spectrumMin = settings.minFreq;
if (spectrumMin < 0)
min = std::max(bottom, top / 1000.0f);
else
min = std::clamp(spectrumMin, bottom, top);
}
}
|