1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
|
/*
* Copyright (c) 2011 Apple Inc. All rights reserved.
*
* @APPLE_APACHE_LICENSE_HEADER_START@
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* @APPLE_APACHE_LICENSE_HEADER_END@
*/
/*
File: ALACEncoder.cpp
*/
// build stuff
#define VERBOSE_DEBUG 0
// headers
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "ALACEncoder.h"
#include "aglib.h"
#include "dplib.h"
#include "matrixlib.h"
#include "ALACBitUtilities.h"
#include "ALACAudioTypes.h"
#include "EndianPortable.h"
// Note: in C you can't typecast to a 2-dimensional array pointer but that's what we need when
// picking which coefs to use so we declare this typedef b/c we *can* typecast to this type
typedef int16_t (*SearchCoefs)[kALACMaxCoefs];
// defines/constants
const uint32_t kALACEncoderMagic = 'dpge';
const uint32_t kMaxSampleSize = 32; // max allowed bit width is 32
const uint32_t kDefaultMixBits = 2;
const uint32_t kDefaultMixRes = 0;
const uint32_t kMaxRes = 4;
const uint32_t kDefaultNumUV = 8;
const uint32_t kMinUV = 4;
const uint32_t kMaxUV = 8;
// static functions
#if VERBOSE_DEBUG
static void AddFiller( BitBuffer * bits, int32_t numBytes );
#endif
/*
Map Format: 3-bit field per channel which is the same as the "element tag" that should be placed
at the beginning of the frame for that channel. Indicates whether SCE, CPE, or LFE.
Each particular field is accessed via the current channel index. Note that the channel
index increments by two for channel pairs.
For example:
C L R 3-channel input = (ID_CPE << 3) | (ID_SCE)
index 0 value = (map & (0x7ul << (0 * 3))) >> (0 * 3)
index 1 value = (map & (0x7ul << (1 * 3))) >> (1 * 3)
C L R Ls Rs LFE 5.1-channel input = (ID_LFE << 15) | (ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE)
index 0 value = (map & (0x7ul << (0 * 3))) >> (0 * 3)
index 1 value = (map & (0x7ul << (1 * 3))) >> (1 * 3)
index 3 value = (map & (0x7ul << (3 * 3))) >> (3 * 3)
index 5 value = (map & (0x7ul << (5 * 3))) >> (5 * 3)
index 7 value = (map & (0x7ul << (7 * 3))) >> (7 * 3)
*/
static const uint32_t sChannelMaps[kALACMaxChannels] =
{
ID_SCE,
ID_CPE,
(ID_CPE << 3) | (ID_SCE),
(ID_SCE << 9) | (ID_CPE << 3) | (ID_SCE),
(ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE),
(ID_SCE << 15) | (ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE),
(ID_SCE << 18) | (ID_SCE << 15) | (ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE),
(ID_SCE << 21) | (ID_CPE << 15) | (ID_CPE << 9) | (ID_CPE << 3) | (ID_SCE)
};
static const uint32_t sSupportediPodSampleRates[] =
{
8000, 11025, 12000, 16000, 22050, 24000, 32000, 44100, 48000
};
/*
Constructor
*/
ALACEncoder::ALACEncoder() :
mBitDepth( 0 ),
mFastMode( 0 ),
mMixBufferU( nil ),
mMixBufferV( nil ),
mPredictorU( nil ),
mPredictorV( nil ),
mShiftBufferUV( nil ),
mWorkBuffer( nil ),
mTotalBytesGenerated( 0 ),
mAvgBitRate( 0 ),
mMaxFrameBytes( 0 )
{
// overrides
mFrameSize = kALACDefaultFrameSize;
}
/*
Destructor
*/
ALACEncoder::~ALACEncoder()
{
// delete the matrix mixing buffers
if ( mMixBufferU )
{
free(mMixBufferU);
mMixBufferU = NULL;
}
if ( mMixBufferV )
{
free(mMixBufferV);
mMixBufferV = NULL;
}
// delete the dynamic predictor's "corrector" buffers
if ( mPredictorU )
{
free(mPredictorU);
mPredictorU = NULL;
}
if ( mPredictorV )
{
free(mPredictorV);
mPredictorV = NULL;
}
// delete the unused byte shift buffer
if ( mShiftBufferUV )
{
free(mShiftBufferUV);
mShiftBufferUV = NULL;
}
// delete the work buffer
if ( mWorkBuffer )
{
free(mWorkBuffer);
mWorkBuffer = NULL;
}
}
#if PRAGMA_MARK
#pragma mark -
#endif
/*
HEADER SPECIFICATION
For every segment we adopt the following header:
1 byte reserved (always 0)
1 byte flags (see below)
[4 byte frame length] (optional, see below)
---Next, the per-segment ALAC parameters---
1 byte mixBits (middle-side parameter)
1 byte mixRes (middle-side parameter, interpreted as signed char)
1 byte shiftU (4 bits modeU, 4 bits denShiftU)
1 byte filterU (3 bits pbFactorU, 5 bits numU)
(numU) shorts (signed DP coefficients for V channel)
---Next, 2nd-channel ALAC parameters in case of stereo mode---
1 byte shiftV (4 bits modeV, 4 bits denShiftV)
1 byte filterV (3 bits pbFactorV, 5 bits numV)
(numV) shorts (signed DP coefficients for V channel)
---After this come the shift-off bytes for (>= 24)-bit data (n-byte shift) if indicated---
---Then comes the AG-compressor bitstream---
FLAGS
-----
The presence of certain flag bits changes the header format such that the parameters might
not even be sent. The currently defined flags format is:
0000psse
where 0 = reserved, must be 0
p = 1-bit field "partial frame" flag indicating 32-bit frame length follows this byte
ss = 2-bit field indicating "number of shift-off bytes ignored by compression"
e = 1-bit field indicating "escape"
The "partial frame" flag means that the following segment is not equal to the frame length specified
in the out-of-band decoder configuration. This allows the decoder to deal with end-of-file partial
segments without incurring the 32-bit overhead for each segment.
The "shift-off" field indicates the number of bytes at the bottom of the word that were passed through
uncompressed. The reason for this is that the entropy inherent in the LS bytes of >= 24-bit words
quite often means that the frame would have to be "escaped" b/c the compressed size would be >= the
uncompressed size. However, by shifting the input values down and running the remaining bits through
the normal compression algorithm, a net win can be achieved. If this field is non-zero, it means that
the shifted-off bytes follow after the parameter section of the header and before the compressed
bitstream. Note that doing this also allows us to use matrixing on 32-bit inputs after one or more
bytes are shifted off the bottom which helps the eventual compression ratio. For stereo channels,
the shifted off bytes are interleaved.
The "escape" flag means that this segment was not compressed b/c the compressed size would be
>= uncompressed size. In that case, the audio data was passed through uncompressed after the header.
The other header parameter bytes will not be sent.
PARAMETERS
----------
If the segment is not a partial or escape segment, the total header size (in bytes) is given exactly by:
4 + (2 + 2 * numU) (mono mode)
4 + (2 + 2 * numV) + (2 + 2 * numV) (stereo mode)
where the ALAC filter-lengths numU, numV are bounded by a
constant (in the current source, numU, numV <= NUMCOEPAIRS), and
this forces an absolute upper bound on header size.
Each segment-decode process loads up these bytes from the front of the
local stream, in the above order, then follows with the entropy-encoded
bits for the given segment.
To generalize middle-side, there are various mixing modes including middle-side, each lossless,
as embodied in the mix() and unmix() functions. These functions exploit a generalized middle-side
transformation:
u := [(rL + (m-r)R)/m];
v := L - R;
where [ ] denotes integer floor. The (lossless) inverse is
L = u + v - [rV/m];
R = L - v;
In the segment header, m and r are encoded in mixBits and mixRes.
Classical "middle-side" is obtained with m = 2, r = 1, but now
we have more generalized mixes.
NOTES
-----
The relevance of the ALAC coefficients is explained in detail
in patent documents.
*/
/*
EncodeStereo()
- encode a channel pair
*/
int32_t ALACEncoder::EncodeStereo( BitBuffer * bitstream, void * inputBuffer, uint32_t stride, uint32_t channelIndex, uint32_t numSamples )
{
BitBuffer workBits;
BitBuffer startBits = *bitstream; // squirrel away copy of current state in case we need to go back and do an escape packet
AGParamRec agParams;
uint32_t bits1, bits2;
uint32_t dilate;
int32_t mixBits, mixRes, maxRes;
uint32_t minBits, minBits1, minBits2;
uint32_t numU, numV;
uint32_t mode;
uint32_t pbFactor;
uint32_t chanBits;
uint32_t denShift;
uint8_t bytesShifted;
SearchCoefs coefsU;
SearchCoefs coefsV;
uint32_t index;
uint8_t partialFrame;
uint32_t escapeBits;
bool doEscape;
int32_t status = ALAC_noErr;
// make sure we handle this bit-depth before we get going
RequireAction( (mBitDepth == 16) || (mBitDepth == 20) || (mBitDepth == 24) || (mBitDepth == 32), return kALAC_ParamError; );
// reload coefs pointers for this channel pair
// - note that, while you might think they should be re-initialized per block, retaining state across blocks
// actually results in better overall compression
// - strangely, re-using the same coefs for the different passes of the "mixRes" search loop instead of using
// different coefs for the different passes of "mixRes" results in even better compression
coefsU = (SearchCoefs) mCoefsU[channelIndex];
coefsV = (SearchCoefs) mCoefsV[channelIndex];
// matrix encoding adds an extra bit but 32-bit inputs cannot be matrixed b/c 33 is too many
// so enable 16-bit "shift off" and encode in 17-bit mode
// - in addition, 24-bit mode really improves with one byte shifted off
if ( mBitDepth == 32 )
bytesShifted = 2;
else if ( mBitDepth >= 24 )
bytesShifted = 1;
else
bytesShifted = 0;
chanBits = mBitDepth - (bytesShifted * 8) + 1;
// flag whether or not this is a partial frame
partialFrame = (numSamples == mFrameSize) ? 0 : 1;
// brute-force encode optimization loop
// - run over variations of the encoding params to find the best choice
mixBits = kDefaultMixBits;
maxRes = kMaxRes;
numU = numV = kDefaultNumUV;
denShift = DENSHIFT_DEFAULT;
mode = 0;
pbFactor = 4;
dilate = 8;
minBits = minBits1 = minBits2 = 1ul << 31;
int32_t bestRes = mLastMixRes[channelIndex];
for ( mixRes = 0; mixRes <= maxRes; mixRes++ )
{
// mix the stereo inputs
switch ( mBitDepth )
{
case 16:
mix16( (int16_t *) inputBuffer, stride, mMixBufferU, mMixBufferV, numSamples/dilate, mixBits, mixRes );
break;
case 20:
mix20( (uint8_t *) inputBuffer, stride, mMixBufferU, mMixBufferV, numSamples/dilate, mixBits, mixRes );
break;
case 24:
// includes extraction of shifted-off bytes
mix24( (uint8_t *) inputBuffer, stride, mMixBufferU, mMixBufferV, numSamples/dilate,
mixBits, mixRes, mShiftBufferUV, bytesShifted );
break;
case 32:
// includes extraction of shifted-off bytes
mix32( (int32_t *) inputBuffer, stride, mMixBufferU, mMixBufferV, numSamples/dilate,
mixBits, mixRes, mShiftBufferUV, bytesShifted );
break;
}
BitBufferInit( &workBits, mWorkBuffer, mMaxOutputBytes );
// run the dynamic predictors
pc_block( mMixBufferU, mPredictorU, numSamples/dilate, coefsU[numU - 1], numU, chanBits, DENSHIFT_DEFAULT );
pc_block( mMixBufferV, mPredictorV, numSamples/dilate, coefsV[numV - 1], numV, chanBits, DENSHIFT_DEFAULT );
// run the lossless compressor on each channel
set_ag_params( &agParams, MB0, (pbFactor * PB0) / 4, KB0, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT );
status = dyn_comp( &agParams, mPredictorU, &workBits, numSamples/dilate, chanBits, &bits1 );
RequireNoErr( status, goto Exit; );
set_ag_params( &agParams, MB0, (pbFactor * PB0) / 4, KB0, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT );
status = dyn_comp( &agParams, mPredictorV, &workBits, numSamples/dilate, chanBits, &bits2 );
RequireNoErr( status, goto Exit; );
// look for best match
if ( (bits1 + bits2) < minBits1 )
{
minBits1 = bits1 + bits2;
bestRes = mixRes;
}
}
mLastMixRes[channelIndex] = (int16_t)bestRes;
// mix the stereo inputs with the current best mixRes
mixRes = mLastMixRes[channelIndex];
switch ( mBitDepth )
{
case 16:
mix16( (int16_t *) inputBuffer, stride, mMixBufferU, mMixBufferV, numSamples, mixBits, mixRes );
break;
case 20:
mix20( (uint8_t *) inputBuffer, stride, mMixBufferU, mMixBufferV, numSamples, mixBits, mixRes );
break;
case 24:
// also extracts the shifted off bytes into the shift buffers
mix24( (uint8_t *) inputBuffer, stride, mMixBufferU, mMixBufferV, numSamples,
mixBits, mixRes, mShiftBufferUV, bytesShifted );
break;
case 32:
// also extracts the shifted off bytes into the shift buffers
mix32( (int32_t *) inputBuffer, stride, mMixBufferU, mMixBufferV, numSamples,
mixBits, mixRes, mShiftBufferUV, bytesShifted );
break;
}
// now it's time for the predictor coefficient search loop
numU = numV = kMinUV;
minBits1 = minBits2 = 1ul << 31;
for ( uint32_t numUV = kMinUV; numUV <= kMaxUV; numUV += 4 )
{
BitBufferInit( &workBits, mWorkBuffer, mMaxOutputBytes );
dilate = 32;
// run the predictor over the same data multiple times to help it converge
for ( uint32_t converge = 0; converge < 8; converge++ )
{
pc_block( mMixBufferU, mPredictorU, numSamples/dilate, coefsU[numUV-1], numUV, chanBits, DENSHIFT_DEFAULT );
pc_block( mMixBufferV, mPredictorV, numSamples/dilate, coefsV[numUV-1], numUV, chanBits, DENSHIFT_DEFAULT );
}
dilate = 8;
set_ag_params( &agParams, MB0, (pbFactor * PB0)/4, KB0, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT );
status = dyn_comp( &agParams, mPredictorU, &workBits, numSamples/dilate, chanBits, &bits1 );
if ( (bits1 * dilate + 16 * numUV) < minBits1 )
{
minBits1 = bits1 * dilate + 16 * numUV;
numU = numUV;
}
set_ag_params( &agParams, MB0, (pbFactor * PB0)/4, KB0, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT );
status = dyn_comp( &agParams, mPredictorV, &workBits, numSamples/dilate, chanBits, &bits2 );
if ( (bits2 * dilate + 16 * numUV) < minBits2 )
{
minBits2 = bits2 * dilate + 16 * numUV;
numV = numUV;
}
}
// test for escape hatch if best calculated compressed size turns out to be more than the input size
minBits = minBits1 + minBits2 + (8 /* mixRes/maxRes/etc. */ * 8) + ((partialFrame == true) ? 32 : 0);
if ( bytesShifted != 0 )
minBits += (numSamples * (bytesShifted * 8) * 2);
escapeBits = (numSamples * mBitDepth * 2) + ((partialFrame == true) ? 32 : 0) + (2 * 8); /* 2 common header bytes */
doEscape = (minBits >= escapeBits) ? true : false;
if ( doEscape == false )
{
// write bitstream header and coefs
BitBufferWrite( bitstream, 0, 12 );
BitBufferWrite( bitstream, (partialFrame << 3) | (bytesShifted << 1), 4 );
if ( partialFrame )
BitBufferWrite( bitstream, numSamples, 32 );
BitBufferWrite( bitstream, mixBits, 8 );
BitBufferWrite( bitstream, mixRes, 8 );
//Assert( (mode < 16) && (DENSHIFT_DEFAULT < 16) );
//Assert( (pbFactor < 8) && (numU < 32) );
//Assert( (pbFactor < 8) && (numV < 32) );
BitBufferWrite( bitstream, (mode << 4) | DENSHIFT_DEFAULT, 8 );
BitBufferWrite( bitstream, (pbFactor << 5) | numU, 8 );
for ( index = 0; index < numU; index++ )
BitBufferWrite( bitstream, coefsU[numU - 1][index], 16 );
BitBufferWrite( bitstream, (mode << 4) | DENSHIFT_DEFAULT, 8 );
BitBufferWrite( bitstream, (pbFactor << 5) | numV, 8 );
for ( index = 0; index < numV; index++ )
BitBufferWrite( bitstream, coefsV[numV - 1][index], 16 );
// if shift active, write the interleaved shift buffers
if ( bytesShifted != 0 )
{
uint32_t bitShift = bytesShifted * 8;
//Assert( bitShift <= 16 );
for ( index = 0; index < (numSamples * 2); index += 2 )
{
uint32_t shiftedVal;
shiftedVal = ((uint32_t)mShiftBufferUV[index + 0] << bitShift) | (uint32_t)mShiftBufferUV[index + 1];
BitBufferWrite( bitstream, shiftedVal, bitShift * 2 );
}
}
// run the dynamic predictor and lossless compression for the "left" channel
// - note: to avoid allocating more buffers, we're mixing and matching between the available buffers instead
// of only using "U" buffers for the U-channel and "V" buffers for the V-channel
if ( mode == 0 )
{
pc_block( mMixBufferU, mPredictorU, numSamples, coefsU[numU - 1], numU, chanBits, DENSHIFT_DEFAULT );
}
else
{
pc_block( mMixBufferU, mPredictorV, numSamples, coefsU[numU - 1], numU, chanBits, DENSHIFT_DEFAULT );
pc_block( mPredictorV, mPredictorU, numSamples, nil, 31, chanBits, 0 );
}
set_ag_params( &agParams, MB0, (pbFactor * PB0) / 4, KB0, numSamples, numSamples, MAX_RUN_DEFAULT );
status = dyn_comp( &agParams, mPredictorU, bitstream, numSamples, chanBits, &bits1 );
RequireNoErr( status, goto Exit; );
// run the dynamic predictor and lossless compression for the "right" channel
if ( mode == 0 )
{
pc_block( mMixBufferV, mPredictorV, numSamples, coefsV[numV - 1], numV, chanBits, DENSHIFT_DEFAULT );
}
else
{
pc_block( mMixBufferV, mPredictorU, numSamples, coefsV[numV - 1], numV, chanBits, DENSHIFT_DEFAULT );
pc_block( mPredictorU, mPredictorV, numSamples, nil, 31, chanBits, 0 );
}
set_ag_params( &agParams, MB0, (pbFactor * PB0) / 4, KB0, numSamples, numSamples, MAX_RUN_DEFAULT );
status = dyn_comp( &agParams, mPredictorV, bitstream, numSamples, chanBits, &bits2 );
RequireNoErr( status, goto Exit; );
/* if we happened to create a compressed packet that was actually bigger than an escape packet would be,
chuck it and do an escape packet
*/
minBits = BitBufferGetPosition( bitstream ) - BitBufferGetPosition( &startBits );
if ( minBits >= escapeBits )
{
*bitstream = startBits; // reset bitstream state
doEscape = true;
}
}
if ( doEscape == true )
{
/* escape */
status = this->EncodeStereoEscape( bitstream, inputBuffer, stride, numSamples );
#if VERBOSE_DEBUG
DebugMsg( "escape!: %lu vs %lu", minBits, escapeBits );
#endif
}
Exit:
return status;
}
/*
EncodeStereoFast()
- encode a channel pair without the search loop for maximum possible speed
*/
int32_t ALACEncoder::EncodeStereoFast( BitBuffer * bitstream, void * inputBuffer, uint32_t stride, uint32_t channelIndex, uint32_t numSamples )
{
BitBuffer startBits = *bitstream; // squirrel away current bit position in case we decide to use escape hatch
AGParamRec agParams;
uint32_t bits1, bits2;
int32_t mixBits, mixRes;
uint32_t minBits, minBits1, minBits2;
uint32_t numU, numV;
uint32_t mode;
uint32_t pbFactor;
uint32_t chanBits;
uint32_t denShift;
uint8_t bytesShifted;
SearchCoefs coefsU;
SearchCoefs coefsV;
uint32_t index;
uint8_t partialFrame;
uint32_t escapeBits;
bool doEscape;
int32_t status;
// make sure we handle this bit-depth before we get going
RequireAction( (mBitDepth == 16) || (mBitDepth == 20) || (mBitDepth == 24) || (mBitDepth == 32), return kALAC_ParamError; );
// reload coefs pointers for this channel pair
// - note that, while you might think they should be re-initialized per block, retaining state across blocks
// actually results in better overall compression
// - strangely, re-using the same coefs for the different passes of the "mixRes" search loop instead of using
// different coefs for the different passes of "mixRes" results in even better compression
coefsU = (SearchCoefs) mCoefsU[channelIndex];
coefsV = (SearchCoefs) mCoefsV[channelIndex];
// matrix encoding adds an extra bit but 32-bit inputs cannot be matrixed b/c 33 is too many
// so enable 16-bit "shift off" and encode in 17-bit mode
// - in addition, 24-bit mode really improves with one byte shifted off
if ( mBitDepth == 32 )
bytesShifted = 2;
else if ( mBitDepth >= 24 )
bytesShifted = 1;
else
bytesShifted = 0;
chanBits = mBitDepth - (bytesShifted * 8) + 1;
// flag whether or not this is a partial frame
partialFrame = (numSamples == mFrameSize) ? 0 : 1;
// set up default encoding parameters for "fast" mode
mixBits = kDefaultMixBits;
mixRes = kDefaultMixRes;
numU = numV = kDefaultNumUV;
denShift = DENSHIFT_DEFAULT;
mode = 0;
pbFactor = 4;
minBits = minBits1 = minBits2 = 1ul << 31;
// mix the stereo inputs with default mixBits/mixRes
switch ( mBitDepth )
{
case 16:
mix16( (int16_t *) inputBuffer, stride, mMixBufferU, mMixBufferV, numSamples, mixBits, mixRes );
break;
case 20:
mix20( (uint8_t *) inputBuffer, stride, mMixBufferU, mMixBufferV, numSamples, mixBits, mixRes );
break;
case 24:
// also extracts the shifted off bytes into the shift buffers
mix24( (uint8_t *) inputBuffer, stride, mMixBufferU, mMixBufferV, numSamples,
mixBits, mixRes, mShiftBufferUV, bytesShifted );
break;
case 32:
// also extracts the shifted off bytes into the shift buffers
mix32( (int32_t *) inputBuffer, stride, mMixBufferU, mMixBufferV, numSamples,
mixBits, mixRes, mShiftBufferUV, bytesShifted );
break;
}
/* speculatively write the bitstream assuming the compressed version will be smaller */
// write bitstream header and coefs
BitBufferWrite( bitstream, 0, 12 );
BitBufferWrite( bitstream, (partialFrame << 3) | (bytesShifted << 1), 4 );
if ( partialFrame )
BitBufferWrite( bitstream, numSamples, 32 );
BitBufferWrite( bitstream, mixBits, 8 );
BitBufferWrite( bitstream, mixRes, 8 );
//Assert( (mode < 16) && (DENSHIFT_DEFAULT < 16) );
//Assert( (pbFactor < 8) && (numU < 32) );
//Assert( (pbFactor < 8) && (numV < 32) );
BitBufferWrite( bitstream, (mode << 4) | DENSHIFT_DEFAULT, 8 );
BitBufferWrite( bitstream, (pbFactor << 5) | numU, 8 );
for ( index = 0; index < numU; index++ )
BitBufferWrite( bitstream, coefsU[numU - 1][index], 16 );
BitBufferWrite( bitstream, (mode << 4) | DENSHIFT_DEFAULT, 8 );
BitBufferWrite( bitstream, (pbFactor << 5) | numV, 8 );
for ( index = 0; index < numV; index++ )
BitBufferWrite( bitstream, coefsV[numV - 1][index], 16 );
// if shift active, write the interleaved shift buffers
if ( bytesShifted != 0 )
{
uint32_t bitShift = bytesShifted * 8;
//Assert( bitShift <= 16 );
for ( index = 0; index < (numSamples * 2); index += 2 )
{
uint32_t shiftedVal;
shiftedVal = ((uint32_t)mShiftBufferUV[index + 0] << bitShift) | (uint32_t)mShiftBufferUV[index + 1];
BitBufferWrite( bitstream, shiftedVal, bitShift * 2 );
}
}
// run the dynamic predictor and lossless compression for the "left" channel
// - note: we always use mode 0 in the "fast" path so we don't need the code for mode != 0
pc_block( mMixBufferU, mPredictorU, numSamples, coefsU[numU - 1], numU, chanBits, DENSHIFT_DEFAULT );
set_ag_params( &agParams, MB0, (pbFactor * PB0) / 4, KB0, numSamples, numSamples, MAX_RUN_DEFAULT );
status = dyn_comp( &agParams, mPredictorU, bitstream, numSamples, chanBits, &bits1 );
RequireNoErr( status, goto Exit; );
// run the dynamic predictor and lossless compression for the "right" channel
pc_block( mMixBufferV, mPredictorV, numSamples, coefsV[numV - 1], numV, chanBits, DENSHIFT_DEFAULT );
set_ag_params( &agParams, MB0, (pbFactor * PB0) / 4, KB0, numSamples, numSamples, MAX_RUN_DEFAULT );
status = dyn_comp( &agParams, mPredictorV, bitstream, numSamples, chanBits, &bits2 );
RequireNoErr( status, goto Exit; );
// do bit requirement calculations
minBits1 = bits1 + (numU * sizeof(int16_t) * 8);
minBits2 = bits2 + (numV * sizeof(int16_t) * 8);
// test for escape hatch if best calculated compressed size turns out to be more than the input size
minBits = minBits1 + minBits2 + (8 /* mixRes/maxRes/etc. */ * 8) + ((partialFrame == true) ? 32 : 0);
if ( bytesShifted != 0 )
minBits += (numSamples * (bytesShifted * 8) * 2);
escapeBits = (numSamples * mBitDepth * 2) + ((partialFrame == true) ? 32 : 0) + (2 * 8); /* 2 common header bytes */
doEscape = (minBits >= escapeBits) ? true : false;
if ( doEscape == false )
{
/* if we happened to create a compressed packet that was actually bigger than an escape packet would be,
chuck it and do an escape packet
*/
minBits = BitBufferGetPosition( bitstream ) - BitBufferGetPosition( &startBits );
if ( minBits >= escapeBits )
{
doEscape = true;
}
}
if ( doEscape == true )
{
/* escape */
// reset bitstream position since we speculatively wrote the compressed version
*bitstream = startBits;
// write escape frame
status = this->EncodeStereoEscape( bitstream, inputBuffer, stride, numSamples );
#if VERBOSE_DEBUG
DebugMsg( "escape!: %u vs %u", minBits, (numSamples * mBitDepth * 2) );
#endif
}
Exit:
return status;
}
/*
EncodeStereoEscape()
- encode stereo escape frame
*/
int32_t ALACEncoder::EncodeStereoEscape( BitBuffer * bitstream, void * inputBuffer, uint32_t stride, uint32_t numSamples )
{
int16_t * input16;
int32_t * input32;
uint8_t partialFrame;
uint32_t index;
// flag whether or not this is a partial frame
partialFrame = (numSamples == mFrameSize) ? 0 : 1;
// write bitstream header
BitBufferWrite( bitstream, 0, 12 );
BitBufferWrite( bitstream, (partialFrame << 3) | 1, 4 ); // LSB = 1 means "frame not compressed"
if ( partialFrame )
BitBufferWrite( bitstream, numSamples, 32 );
// just copy the input data to the output buffer
switch ( mBitDepth )
{
case 16:
input16 = (int16_t *) inputBuffer;
for ( index = 0; index < (numSamples * stride); index += stride )
{
BitBufferWrite( bitstream, input16[index + 0], 16 );
BitBufferWrite( bitstream, input16[index + 1], 16 );
}
break;
case 20:
// mix20() with mixres param = 0 means de-interleave so use it to simplify things
mix20( (uint8_t *) inputBuffer, stride, mMixBufferU, mMixBufferV, numSamples, 0, 0 );
for ( index = 0; index < numSamples; index++ )
{
BitBufferWrite( bitstream, mMixBufferU[index], 20 );
BitBufferWrite( bitstream, mMixBufferV[index], 20 );
}
break;
case 24:
// mix24() with mixres param = 0 means de-interleave so use it to simplify things
mix24( (uint8_t *) inputBuffer, stride, mMixBufferU, mMixBufferV, numSamples, 0, 0, mShiftBufferUV, 0 );
for ( index = 0; index < numSamples; index++ )
{
BitBufferWrite( bitstream, mMixBufferU[index], 24 );
BitBufferWrite( bitstream, mMixBufferV[index], 24 );
}
break;
case 32:
input32 = (int32_t *) inputBuffer;
for ( index = 0; index < (numSamples * stride); index += stride )
{
BitBufferWrite( bitstream, input32[index + 0], 32 );
BitBufferWrite( bitstream, input32[index + 1], 32 );
}
break;
}
return ALAC_noErr;
}
/*
EncodeMono()
- encode a mono input buffer
*/
int32_t ALACEncoder::EncodeMono( BitBuffer * bitstream, void * inputBuffer, uint32_t stride, uint32_t channelIndex, uint32_t numSamples )
{
BitBuffer startBits = *bitstream; // squirrel away copy of current state in case we need to go back and do an escape packet
AGParamRec agParams;
uint32_t bits1;
uint32_t numU;
SearchCoefs coefsU;
uint32_t dilate;
uint32_t minBits, bestU;
uint32_t minU, maxU;
uint32_t index, index2;
uint8_t bytesShifted;
uint32_t shift;
uint32_t mask;
uint32_t chanBits;
uint8_t pbFactor;
uint8_t partialFrame;
int16_t * input16;
int32_t * input32;
uint32_t escapeBits;
bool doEscape;
int32_t status;
// make sure we handle this bit-depth before we get going
RequireAction( (mBitDepth == 16) || (mBitDepth == 20) || (mBitDepth == 24) || (mBitDepth == 32), return kALAC_ParamError; );
status = ALAC_noErr;
// reload coefs array from previous frame
coefsU = (SearchCoefs) mCoefsU[channelIndex];
// pick bit depth for actual encoding
// - we lop off the lower byte(s) for 24-/32-bit encodings
if ( mBitDepth == 32 )
bytesShifted = 2;
else if ( mBitDepth >= 24 )
bytesShifted = 1;
else
bytesShifted = 0;
shift = bytesShifted * 8;
mask = (1ul << shift) - 1;
chanBits = mBitDepth - (bytesShifted * 8);
// flag whether or not this is a partial frame
partialFrame = (numSamples == mFrameSize) ? 0 : 1;
// convert N-bit data to 32-bit for predictor
switch ( mBitDepth )
{
case 16:
{
// convert 16-bit data to 32-bit for predictor
input16 = (int16_t *) inputBuffer;
for ( index = 0, index2 = 0; index < numSamples; index++, index2 += stride )
mMixBufferU[index] = (int32_t) input16[index2];
break;
}
case 20:
// convert 20-bit data to 32-bit for predictor
copy20ToPredictor( (uint8_t *) inputBuffer, stride, mMixBufferU, numSamples );
break;
case 24:
// convert 24-bit data to 32-bit for the predictor and extract the shifted off byte(s)
copy24ToPredictor( (uint8_t *) inputBuffer, stride, mMixBufferU, numSamples );
for ( index = 0; index < numSamples; index++ )
{
mShiftBufferUV[index] = (uint16_t)(mMixBufferU[index] & mask);
mMixBufferU[index] >>= shift;
}
break;
case 32:
{
// just copy the 32-bit input data for the predictor and extract the shifted off byte(s)
input32 = (int32_t *) inputBuffer;
for ( index = 0, index2 = 0; index < numSamples; index++, index2 += stride )
{
int32_t val = input32[index2];
mShiftBufferUV[index] = (uint16_t)(val & mask);
mMixBufferU[index] = val >> shift;
}
break;
}
}
// brute-force encode optimization loop (implied "encode depth" of 0 if comparing to cmd line tool)
// - run over variations of the encoding params to find the best choice
minU = 4;
maxU = 8;
minBits = 1ul << 31;
pbFactor = 4;
minBits = 1ul << 31;
bestU = minU;
for ( numU = minU; numU <= maxU; numU += 4 )
{
BitBuffer workBits;
uint32_t numBits;
BitBufferInit( &workBits, mWorkBuffer, mMaxOutputBytes );
dilate = 32;
for ( uint32_t converge = 0; converge < 7; converge++ )
pc_block( mMixBufferU, mPredictorU, numSamples/dilate, coefsU[numU-1], numU, chanBits, DENSHIFT_DEFAULT );
dilate = 8;
pc_block( mMixBufferU, mPredictorU, numSamples/dilate, coefsU[numU-1], numU, chanBits, DENSHIFT_DEFAULT );
set_ag_params( &agParams, MB0, (pbFactor * PB0) / 4, KB0, numSamples/dilate, numSamples/dilate, MAX_RUN_DEFAULT );
status = dyn_comp( &agParams, mPredictorU, &workBits, numSamples/dilate, chanBits, &bits1 );
RequireNoErr( status, goto Exit; );
numBits = (dilate * bits1) + (16 * numU);
if ( numBits < minBits )
{
bestU = numU;
minBits = numBits;
}
}
// test for escape hatch if best calculated compressed size turns out to be more than the input size
// - first, add bits for the header bytes mixRes/maxRes/shiftU/filterU
minBits += (4 /* mixRes/maxRes/etc. */ * 8) + ((partialFrame == true) ? 32 : 0);
if ( bytesShifted != 0 )
minBits += (numSamples * (bytesShifted * 8));
escapeBits = (numSamples * mBitDepth) + ((partialFrame == true) ? 32 : 0) + (2 * 8); /* 2 common header bytes */
doEscape = (minBits >= escapeBits) ? true : false;
if ( doEscape == false )
{
// write bitstream header
BitBufferWrite( bitstream, 0, 12 );
BitBufferWrite( bitstream, (partialFrame << 3) | (bytesShifted << 1), 4 );
if ( partialFrame )
BitBufferWrite( bitstream, numSamples, 32 );
BitBufferWrite( bitstream, 0, 16 ); // mixBits = mixRes = 0
// write the params and predictor coefs
numU = bestU;
BitBufferWrite( bitstream, (0 << 4) | DENSHIFT_DEFAULT, 8 ); // modeU = 0
BitBufferWrite( bitstream, (pbFactor << 5) | numU, 8 );
for ( index = 0; index < numU; index++ )
BitBufferWrite( bitstream, coefsU[numU-1][index], 16 );
// if shift active, write the interleaved shift buffers
if ( bytesShifted != 0 )
{
for ( index = 0; index < numSamples; index++ )
BitBufferWrite( bitstream, mShiftBufferUV[index], shift );
}
// run the dynamic predictor with the best result
pc_block( mMixBufferU, mPredictorU, numSamples, coefsU[numU-1], numU, chanBits, DENSHIFT_DEFAULT );
// do lossless compression
set_standard_ag_params( &agParams, numSamples, numSamples );
status = dyn_comp( &agParams, mPredictorU, bitstream, numSamples, chanBits, &bits1 );
//AssertNoErr( status );
/* if we happened to create a compressed packet that was actually bigger than an escape packet would be,
chuck it and do an escape packet
*/
minBits = BitBufferGetPosition( bitstream ) - BitBufferGetPosition( &startBits );
if ( minBits >= escapeBits )
{
*bitstream = startBits; // reset bitstream state
doEscape = true;
}
}
if ( doEscape == true )
{
// write bitstream header and coefs
BitBufferWrite( bitstream, 0, 12 );
BitBufferWrite( bitstream, (partialFrame << 3) | 1, 4 ); // LSB = 1 means "frame not compressed"
if ( partialFrame )
BitBufferWrite( bitstream, numSamples, 32 );
// just copy the input data to the output buffer
switch ( mBitDepth )
{
case 16:
input16 = (int16_t *) inputBuffer;
for ( index = 0; index < (numSamples * stride); index += stride )
BitBufferWrite( bitstream, input16[index], 16 );
break;
case 20:
// convert 20-bit data to 32-bit for simplicity
copy20ToPredictor( (uint8_t *) inputBuffer, stride, mMixBufferU, numSamples );
for ( index = 0; index < numSamples; index++ )
BitBufferWrite( bitstream, mMixBufferU[index], 20 );
break;
case 24:
// convert 24-bit data to 32-bit for simplicity
copy24ToPredictor( (uint8_t *) inputBuffer, stride, mMixBufferU, numSamples );
for ( index = 0; index < numSamples; index++ )
BitBufferWrite( bitstream, mMixBufferU[index], 24 );
break;
case 32:
input32 = (int32_t *) inputBuffer;
for ( index = 0; index < (numSamples * stride); index += stride )
BitBufferWrite( bitstream, input32[index], 32 );
break;
}
#if VERBOSE_DEBUG
DebugMsg( "escape!: %lu vs %lu", minBits, (numSamples * mBitDepth) );
#endif
}
Exit:
return status;
}
#if PRAGMA_MARK
#pragma mark -
#endif
/*
Encode()
- encode the next block of samples
*/
int32_t ALACEncoder::Encode(AudioFormatDescription theInputFormat, AudioFormatDescription theOutputFormat,
unsigned char * theReadBuffer, unsigned char * theWriteBuffer, int32_t * ioNumBytes)
{
uint32_t numFrames;
uint32_t outputSize;
BitBuffer bitstream;
int32_t status;
numFrames = *ioNumBytes/theInputFormat.mBytesPerPacket;
// create a bit buffer structure pointing to our output buffer
BitBufferInit( &bitstream, theWriteBuffer, mMaxOutputBytes );
if ( theInputFormat.mChannelsPerFrame == 2 )
{
// add 3-bit frame start tag ID_CPE = channel pair & 4-bit element instance tag = 0
BitBufferWrite( &bitstream, ID_CPE, 3 );
BitBufferWrite( &bitstream, 0, 4 );
// encode stereo input buffer
if ( mFastMode == false )
status = this->EncodeStereo( &bitstream, theReadBuffer, 2, 0, numFrames );
else
status = this->EncodeStereoFast( &bitstream, theReadBuffer, 2, 0, numFrames );
RequireNoErr( status, goto Exit; );
}
else if ( theInputFormat.mChannelsPerFrame == 1 )
{
// add 3-bit frame start tag ID_SCE = mono channel & 4-bit element instance tag = 0
BitBufferWrite( &bitstream, ID_SCE, 3 );
BitBufferWrite( &bitstream, 0, 4 );
// encode mono input buffer
status = this->EncodeMono( &bitstream, theReadBuffer, 1, 0, numFrames );
RequireNoErr( status, goto Exit; );
}
else
{
char * inputBuffer;
uint32_t tag;
uint32_t channelIndex;
uint32_t inputIncrement;
uint8_t stereoElementTag;
uint8_t monoElementTag;
uint8_t lfeElementTag;
inputBuffer = (char *) theReadBuffer;
inputIncrement = ((mBitDepth + 7) / 8);
stereoElementTag = 0;
monoElementTag = 0;
lfeElementTag = 0;
for ( channelIndex = 0; channelIndex < theInputFormat.mChannelsPerFrame; )
{
tag = (sChannelMaps[theInputFormat.mChannelsPerFrame - 1] & (0x7ul << (channelIndex * 3))) >> (channelIndex * 3);
BitBufferWrite( &bitstream, tag, 3 );
switch ( tag )
{
case ID_SCE:
// mono
BitBufferWrite( &bitstream, monoElementTag, 4 );
status = this->EncodeMono( &bitstream, inputBuffer, theInputFormat.mChannelsPerFrame, channelIndex, numFrames );
inputBuffer += inputIncrement;
channelIndex++;
monoElementTag++;
break;
case ID_CPE:
// stereo
BitBufferWrite( &bitstream, stereoElementTag, 4 );
status = this->EncodeStereo( &bitstream, inputBuffer, theInputFormat.mChannelsPerFrame, channelIndex, numFrames );
inputBuffer += (inputIncrement * 2);
channelIndex += 2;
stereoElementTag++;
break;
case ID_LFE:
// LFE channel (subwoofer)
BitBufferWrite( &bitstream, lfeElementTag, 4 );
status = this->EncodeMono( &bitstream, inputBuffer, theInputFormat.mChannelsPerFrame, channelIndex, numFrames );
inputBuffer += inputIncrement;
channelIndex++;
lfeElementTag++;
break;
default:
status = kALAC_ParamError;
goto Exit;
}
RequireNoErr( status, goto Exit; );
}
}
#if VERBOSE_DEBUG
{
// if there is room left in the output buffer, add some random fill data to test decoder
int32_t bitsLeft;
int32_t bytesLeft;
bitsLeft = BitBufferGetPosition( &bitstream ) - 3; // - 3 for ID_END tag
bytesLeft = bitstream.byteSize - ((bitsLeft + 7) / 8);
if ( (bytesLeft > 20) && ((bytesLeft & 0x4u) != 0) )
AddFiller( &bitstream, bytesLeft );
}
#endif
// add 3-bit frame end tag: ID_END
BitBufferWrite( &bitstream, ID_END, 3 );
// byte-align the output data
BitBufferByteAlign( &bitstream, true );
outputSize = BitBufferGetPosition( &bitstream ) / 8;
//Assert( outputSize <= mMaxOutputBytes );
// all good, let iTunes know what happened and remember the total number of input sample frames
*ioNumBytes = outputSize;
//mEncodedFrames += encodeMsg->numInputSamples;
// gather encoding stats
mTotalBytesGenerated += outputSize;
mMaxFrameBytes = MAX( mMaxFrameBytes, outputSize );
status = ALAC_noErr;
Exit:
return status;
}
/*
Finish()
- drain out any leftover samples
*/
int32_t ALACEncoder::Finish()
{
/* // finalize bit rate statistics
if ( mSampleSize.numEntries != 0 )
mAvgBitRate = (uint32_t)( (((float)mTotalBytesGenerated * 8.0f) / (float)mSampleSize.numEntries) * ((float)mSampleRate / (float)mFrameSize) );
else
mAvgBitRate = 0;
*/
return ALAC_noErr;
}
#if PRAGMA_MARK
#pragma mark -
#endif
/*
GetConfig()
*/
void ALACEncoder::GetConfig( ALACSpecificConfig & config )
{
config.frameLength = Swap32NtoB(mFrameSize);
config.compatibleVersion = (uint8_t) kALACCompatibleVersion;
config.bitDepth = (uint8_t) mBitDepth;
config.pb = (uint8_t) PB0;
config.kb = (uint8_t) KB0;
config.mb = (uint8_t) MB0;
config.numChannels = (uint8_t) mNumChannels;
config.maxRun = Swap16NtoB((uint16_t) MAX_RUN_DEFAULT);
config.maxFrameBytes = Swap32NtoB(mMaxFrameBytes);
config.avgBitRate = Swap32NtoB(mAvgBitRate);
config.sampleRate = Swap32NtoB(mOutputSampleRate);
}
uint32_t ALACEncoder::GetMagicCookieSize(uint32_t inNumChannels)
{
if (inNumChannels > 2)
{
return sizeof(ALACSpecificConfig) + kChannelAtomSize + sizeof(ALACAudioChannelLayout);
}
else
{
return sizeof(ALACSpecificConfig);
}
}
void ALACEncoder::GetMagicCookie(void * outCookie, uint32_t * ioSize)
{
ALACSpecificConfig theConfig = {0};
ALACAudioChannelLayout theChannelLayout = {0};
uint8_t theChannelAtom[kChannelAtomSize] = {0, 0, 0, 0, 'c', 'h', 'a', 'n', 0, 0, 0, 0};
uint32_t theCookieSize = sizeof(ALACSpecificConfig);
uint8_t * theCookiePointer = (uint8_t *)outCookie;
GetConfig(theConfig);
if (theConfig.numChannels > 2)
{
theChannelLayout.mChannelLayoutTag = Swap32NtoB(ALACChannelLayoutTags[theConfig.numChannels - 1]);
theCookieSize += (sizeof(ALACAudioChannelLayout) + kChannelAtomSize);
}
if (*ioSize >= theCookieSize)
{
memcpy(theCookiePointer, &theConfig, sizeof(ALACSpecificConfig));
theChannelAtom[3] = (sizeof(ALACAudioChannelLayout) + kChannelAtomSize);
if (theConfig.numChannels > 2)
{
theCookiePointer += sizeof(ALACSpecificConfig);
memcpy(theCookiePointer, theChannelAtom, kChannelAtomSize);
theCookiePointer += kChannelAtomSize;
memcpy(theCookiePointer, &theChannelLayout, sizeof(ALACAudioChannelLayout));
}
*ioSize = theCookieSize;
}
else
{
*ioSize = 0; // no incomplete cookies
}
}
/*
InitializeEncoder()
- initialize the encoder component with the current config
*/
int32_t ALACEncoder::InitializeEncoder(AudioFormatDescription theOutputFormat)
{
int32_t status;
mOutputSampleRate = theOutputFormat.mSampleRate;
mNumChannels = theOutputFormat.mChannelsPerFrame;
switch(theOutputFormat.mFormatFlags)
{
case 1:
mBitDepth = 16;
break;
case 2:
mBitDepth = 20;
break;
case 3:
mBitDepth = 24;
break;
case 4:
mBitDepth = 32;
break;
default:
break;
}
// set up default encoding parameters and state
// - note: mFrameSize is set in the constructor or via SetFrameSize() which must be called before this routine
for ( uint32_t index = 0; index < kALACMaxChannels; index++ )
mLastMixRes[index] = kDefaultMixRes;
// the maximum output frame size can be no bigger than (samplesPerBlock * numChannels * ((10 + sampleSize)/8) + 1)
// but note that this can be bigger than the input size!
// - since we don't yet know what our input format will be, use our max allowed sample size in the calculation
mMaxOutputBytes = mFrameSize * mNumChannels * ((10 + kMaxSampleSize) / 8) + 1;
// allocate mix buffers
mMixBufferU = (int32_t *) calloc( mFrameSize * sizeof(int32_t), 1 );
mMixBufferV = (int32_t *) calloc( mFrameSize * sizeof(int32_t), 1 );
// allocate dynamic predictor buffers
mPredictorU = (int32_t *) calloc( mFrameSize * sizeof(int32_t), 1 );
mPredictorV = (int32_t *) calloc( mFrameSize * sizeof(int32_t), 1 );
// allocate combined shift buffer
mShiftBufferUV = (uint16_t *) calloc( mFrameSize * 2 * sizeof(uint16_t),1 );
// allocate work buffer for search loop
mWorkBuffer = (uint8_t *) calloc( mMaxOutputBytes, 1 );
RequireAction( (mMixBufferU != nil) && (mMixBufferV != nil) &&
(mPredictorU != nil) && (mPredictorV != nil) &&
(mShiftBufferUV != nil) && (mWorkBuffer != nil ),
status = kALAC_MemFullError; goto Exit; );
status = ALAC_noErr;
// initialize coefs arrays once b/c retaining state across blocks actually improves the encode ratio
for ( int32_t channel = 0; channel < (int32_t)mNumChannels; channel++ )
{
for ( int32_t search = 0; search < kALACMaxSearches; search++ )
{
init_coefs( mCoefsU[channel][search], DENSHIFT_DEFAULT, kALACMaxCoefs );
init_coefs( mCoefsV[channel][search], DENSHIFT_DEFAULT, kALACMaxCoefs );
}
}
Exit:
return status;
}
/*
GetSourceFormat()
- given the input format, return one of our supported formats
*/
void ALACEncoder::GetSourceFormat( const AudioFormatDescription * source, AudioFormatDescription * output )
{
// default is 16-bit native endian
// - note: for float input we assume that's coming from one of our decoders (mp3, aac) so it only makes sense
// to encode to 16-bit since the source was lossy in the first place
// - note: if not a supported bit depth, find the closest supported bit depth to the input one
if ( (source->mFormatID != kALACFormatLinearPCM) || ((source->mFormatFlags & kALACFormatFlagIsFloat) != 0) ||
( source->mBitsPerChannel <= 16 ) )
mBitDepth = 16;
else if ( source->mBitsPerChannel <= 20 )
mBitDepth = 20;
else if ( source->mBitsPerChannel <= 24 )
mBitDepth = 24;
else
mBitDepth = 32;
// we support 16/20/24/32-bit integer data at any sample rate and our target number of channels
// and sample rate were specified when we were configured
/*
MakeUncompressedAudioFormat( mNumChannels, (float) mOutputSampleRate, mBitDepth, kAudioFormatFlagsNativeIntegerPacked, output );
*/
}
#if VERBOSE_DEBUG
#if PRAGMA_MARK
#pragma mark -
#endif
/*
AddFiller()
- add fill and data stream elements to the bitstream to test the decoder
*/
static void AddFiller( BitBuffer * bits, int32_t numBytes )
{
uint8_t tag;
uint32_t index;
// out of lameness, subtract 6 bytes to deal with header + alignment as required for fill/data elements
numBytes -= 6;
if ( numBytes <= 0 )
return;
// randomly pick Fill or Data Stream Element based on numBytes requested
tag = (numBytes & 0x8) ? ID_FIL : ID_DSE;
BitBufferWrite( bits, tag, 3 );
if ( tag == ID_FIL )
{
// can't write more than 269 bytes in a fill element
numBytes = (numBytes > 269) ? 269 : numBytes;
// fill element = 4-bit size unless >= 15 then 4-bit size + 8-bit extension size
if ( numBytes >= 15 )
{
uint16_t extensionSize;
BitBufferWrite( bits, 15, 4 );
// 8-bit extension count field is "extra + 1" which is weird but I didn't define the syntax
// - otherwise, there's no way to represent 15
// - for example, to really mean 15 bytes you must encode extensionSize = 1
// - why it's not like data stream elements I have no idea
extensionSize = (numBytes - 15) + 1;
Assert( extensionSize <= 255 );
BitBufferWrite( bits, extensionSize, 8 );
}
else
BitBufferWrite( bits, numBytes, 4 );
BitBufferWrite( bits, 0x10, 8 ); // extension_type = FILL_DATA = b0001 or'ed with fill_nibble = b0000
for ( index = 0; index < (numBytes - 1); index++ )
BitBufferWrite( bits, 0xa5, 8 ); // fill_byte = b10100101 = 0xa5
}
else
{
// can't write more than 510 bytes in a data stream element
numBytes = (numBytes > 510) ? 510 : numBytes;
BitBufferWrite( bits, 0, 4 ); // element instance tag
BitBufferWrite( bits, 1, 1 ); // byte-align flag = true
// data stream element = 8-bit size unless >= 255 then 8-bit size + 8-bit size
if ( numBytes >= 255 )
{
BitBufferWrite( bits, 255, 8 );
BitBufferWrite( bits, numBytes - 255, 8 );
}
else
BitBufferWrite( bits, numBytes, 8 );
BitBufferByteAlign( bits, true ); // byte-align with zeros
for ( index = 0; index < numBytes; index++ )
BitBufferWrite( bits, 0x5a, 8 );
}
}
#endif /* VERBOSE_DEBUG */
|