1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
|
/**********************************************************************
* file: gene.hh
* licence: Artistic Licence, see file LICENCE.TXT or
* http://www.opensource.org/licenses/artistic-license.php
* descr.:
* authors: Mario Stanke, mario.stanke@uni-greifswald.de
*
**********************************************************************/
#ifndef _GENE_HH
#define _GENE_HH
// project includes
#include "motif.hh"
#include "pp_scoring.hh"
#include "hints.hh"
// Forward declarations
class State;
class Transcript;
class Gene;
class AltGene;
class AnnoSequence;
template<class T>
struct ptr_comparison
{
bool operator()(T* a, T* b) { return *a < *b; }
};
class SrcEvidence {
public:
SrcEvidence(string srcname){
this->srcname = srcname;
freq = 0;
}
string srcname;
int freq;
list<string> groupnames;
};
bool operator<(const SrcEvidence& e1, const SrcEvidence& e2);
/*
* class SrcEvidence
* A summary of extrinsic evidence by source of evidence.
* Example:
* E : 7 (e1,e2,e3,e4,e5,e6,e7)
* P : 2 (p1,p2)
* T : 1 (t1)
* numEvidence = 10. numSources = 3. srcnames = [E,P,T], freq= [7,2,1], groupnames[0]= {e1,e2,...,e7}
*/
class Evidence {
public:
Evidence(bool withNames) {
numEvidence = 0;
this->withNames = withNames;
}
~Evidence() {
}
void add(string source, string name);
void add(string source);
void print();
list<SrcEvidence> sourceEvidence;
int numEvidence;
bool withNames;
};
Evidence *stateEvidenceSummary(State *state1, State *state2 = NULL);
/**
* class State
*
*/
class State {
public:
/**
* The beginning position of the current state.
*/
int begin;
/**
* The ending position of the current state.
*/
int end;
/**
* The next state.
*/
State *next;
StateType type;
Double prob;
bool hasScore;
float apostprob; // score = posterior probability
int sampleCount;
Evidence *evidence;
char truncated; // truncated left, truncated right?
int framemod; // reading frame modifier, frame = frame given by type + framemod (for truncation)
State(int first, int last, StateType t) :
begin(first), end(last),
next(NULL),
type(t),
prob(0),
hasScore(false),
apostprob(0),
sampleCount(1),
evidence(NULL),
truncated(0),
framemod(0)
{}
State() :
begin(0),
end(0),
next(NULL),
type(TYPE_UNKNOWN),
prob(0),
hasScore(false),
apostprob(0),
sampleCount(1),
evidence(NULL),
truncated(0),
framemod(0) {}
~State(){
if (evidence)
delete evidence;
}
State *cloneStateSequence(){
State *erg = new State(*this);
if (next)
erg->next = next->cloneStateSequence();
else
erg->next = NULL;
return erg;
}
// copy constructor
State(const State& other) :
begin(other.begin),
end(other.end),
next(other.next),
type(other.type),
prob(other.prob),
hasScore(other.hasScore),
apostprob(other.apostprob),
sampleCount(other.sampleCount),
evidence(NULL),
truncated(other.truncated),
framemod(other.framemod)
{
if (other.evidence)
evidence = new Evidence(*other.evidence);
}
int frame(); // reading frame, in case it is a (coding) exon, usually depends only on the type
bool frame_compatible(const Feature *hint);
void addEvidence(string srcname) {if (!evidence) evidence = new Evidence(false); evidence->add(srcname);}
bool operator< (const State &other) const;
bool operator== (const State &other) const;
int length() {
return end - begin + 1;
}
Strand strand() {return isOnFStrand(type)? plusstrand : minusstrand;}
State *getBiologicalState();
void setTruncFlag(int end, int predEnd, int dnalen);
void includeFrameModIntoType();
};
bool frame_compatible(State *ex1, State* ex2);
/**
* A path through the Hidden-Markov-Model states
* author Mario Stanke
*/
class StatePath {
public:
StatePath(){
first = NULL;
pathemiProb = 0.0;
intron_d = 0;
seqname = "";
}
~StatePath(){
State *tmp;
while( first ){
tmp = first->next;
delete first;
first = tmp;
}
}
void push(State *st){
st->next = first;
first = st;
}
int size() {
int n = 0;
for (State* st = first; st != NULL; st = st->next) {
n++;
}
return n;
}
void print();
static StatePath* condenseStatePath(StatePath *oldpath);
Transcript* projectOntoGeneSequence(const char *genenames);
static StatePath* getInducedStatePath(Transcript *genelist, int dnalen, bool printErrors=true);
void reverse();
bool operator== (const StatePath &other) const;
bool operator< (const StatePath &other) const;
private:
void pushIntron(int begin, int end, int frame, bool onFStrand);
public:
string seqname;
State* first;
Double pathemiProb;
int intron_d;
list<PP::Match> proteinMatches;
};
int lenStateList(State *head);
/**
* class Transcript
* a single splice version, not neccessarily coding
*/
class Transcript {
public:
Transcript() {
exons = introns = (State*) NULL;
next = NULL;
transstart = transend = -1;
seqname = id = source = "";
strand = plusstrand;
complete = true;
apostprob = 0.0;
hasProbs = false;
throwaway = false;
viterbi = true;
}
Transcript (const Transcript& other);
Transcript& operator= (const Transcript& other);
virtual ~Transcript(){
State *st, *tmp;
list<State*> sl = getExInInHeads();
for (list<State*>::iterator it = sl.begin(); it != sl.end(); ++it){
st = *it;
while( st ){
tmp = st->next;
delete st;
st = tmp;
}
}
}
virtual Transcript* clone() {return new Transcript(*this);}
Transcript *cloneGeneSequence(){
Transcript *res = clone(); // returns a Transcript or a Gene as appropriate
if (next)
res->next = next->cloneGeneSequence();
else
res->next = NULL;
return res;
}
static void destroyGeneSequence(Transcript *head) {
Transcript* nextHead = head;
while (nextHead) {
head = nextHead;
nextHead = nextHead->next;
delete head;
}
}
void addStatePostProbs(float p);
void setStatePostProbs(float p);
void addSampleCount(int k);
void setSampleCount(int k);
virtual int geneBegin() const { return transstart;}
virtual int geneEnd() const { return transend;}
virtual bool isCoding() const { return false; }
bool operator< (const Transcript &other) const;
bool operator== (const Transcript &other) const;
void normPostProb(float n);
void updatePostProb(Transcript* other);
virtual list<State*> getExInHeads() const {
list<State*> L;
L.push_back(exons);
L.push_back(introns);
return L;
}
virtual list<State*> getExInInHeads() const { return getExInHeads();}
double meanStateProb();
char* getExonicSequence(AnnoSequence *annoseq = NULL,
bool noOffset = false) const; // CDS or whole RNA, respectively
virtual void shiftCoordinates(int d);
virtual bool almostIdenticalTo(Transcript *other);
virtual void printCodingSeq(AnnoSequence *annoseq) const {}; // print nothing
virtual void printProteinSeq(AnnoSequence *annoseq) const {};// for noncoding
virtual void printBlockSequences(AnnoSequence *annoseq) const {}; // genes
virtual void printGFF() const;
virtual void printEvidence() const {}; // implemented only for coding genes
void setStateHasScore(bool has);
static Transcript* getGenesOnStrand(Transcript* genes, Strand strand);
static void filterTranscriptsByMaxTracks(list<Transcript*> &gl, int maxTracks);
virtual double supportingFraction(HintGroup *group) {return 0.0;}
public:
State* exons; // the exons (not UTR)
State* introns; // the introns between 'exons'
int transstart, transend; // transcription boundaries, -1 if not known
Transcript* next;
string id; // transcript id
string seqname;
string source;
Strand strand;
Boolean complete; //coding region is complete
string geneid; // id of the AltGene
float apostprob;
bool hasProbs;
bool throwaway;
bool viterbi;
static bool gff3;
static bool print_tss;
static bool print_tts;
};
void filterGenePrediction(list<Transcript*> &gl, list<Transcript*> &filteredTranscripts, const char *seq, Strand strand, bool noInFrameStop, double minmeanexonintronprob=0.0, double minexonintronprob=0.0);
/**
* class Gene
* a single splice version (transcript) of a coding gene
*/
class Gene : public Transcript {
public:
Gene() {
utr5exons = utr3exons = utr5introns = utr3introns = (State*) 0;
length = clength = 0;
weight = 1;
strand = plusstrand;
frame = 0;
complete5utr = complete3utr = true;
codingstart = codingend = -1;
supportingEvidence = incompatibleEvidence = CDSexonEvidence = CDSintronEvidence = UTR5stateEvidence = UTR3stateEvidence = NULL;
}
Gene(const Gene& other);
virtual Gene* clone() { return new Gene(*this); }
~Gene(){ // this calls ~Transcript implicitly, which deletes exons and introns
if (supportingEvidence)
delete supportingEvidence;
if (incompatibleEvidence)
delete incompatibleEvidence;
if (CDSintronEvidence)
delete CDSintronEvidence;
if (CDSexonEvidence)
delete CDSexonEvidence;
if (UTR5stateEvidence)
delete UTR5stateEvidence;
if (UTR3stateEvidence)
delete UTR3stateEvidence;
}
list<State*> getExInHeads() const { list<State*> L; L.push_back(exons); L.push_back(introns); L.push_back(utr5exons); L.push_back(utr3exons); return L;}
list<State*> getExInInHeads() const { list<State*> L = getExInHeads(); L.push_back(utr5introns); L.push_back(utr3introns); return L;}
bool hasInFrameStop(AnnoSequence *annoseq) const;
// void computeBC(char *seq);
int numExons() const;
State *lastExon() const;
bool identicalCDS(Gene *other);
using Transcript::almostIdenticalTo; // not really, but to prevent the compiler warning on MAC
virtual bool almostIdenticalTo(Gene *other);
void shiftCoordinates(int d);
int geneBegin() const { return (transstart>=0)? transstart : codingstart;}
int geneEnd() const { return (transend>=0)? transend : codingend;}
virtual bool isCoding() const { return true; }
void addUTR(State *mrnaRanges, bool complete_l=true, bool complete_r=true);
void compileExtrinsicEvidence(list<HintGroup> *groupList);
double supportingFraction(HintGroup *group);
void addSupportedStates(HintGroup *group);
double getPercentSupported() const;
int getCDSCoord(int loc, bool comp) const;
bool completeCDS() const;
void print();
void printGFF() const;
void printCodingSeq(AnnoSequence *annoseq) const;
void printProteinSeq(AnnoSequence *annoseq) const;
void printBlockSequences(AnnoSequence *annoseq) const;
virtual void printEvidence() const;
void truncateMaskedUTR(AnnoSequence *annoseq);
static void init();
/// members for UnTranslated Region
State* utr5exons;
State* utr3exons;
State* utr5introns;
State* utr3introns;
int codingstart, codingend; // transstart <= codingstart <= codingend <= transend, if not -1
bool complete5utr;
bool complete3utr;
/// The length of the span of the coding part (with introns)
int length;
/// The coding length of the gene
int clength;
/// The reading frame position of the first base (usually 0)
int frame;
BaseCount bc;
int weight;
Evidence *supportingEvidence;
Evidence *incompatibleEvidence;
Evidence *CDSexonEvidence;
Evidence *CDSintronEvidence;
Evidence *UTR5stateEvidence;
Evidence *UTR3stateEvidence;
list<PP::Match> proteinMatches; // true if gene matches protein profile
/// output options
static bool print_start;
static bool print_stop;
static bool print_introns;
static bool print_cds;
static bool print_exonnames;
static bool stopCodonExcludedFromCDS;
static bool print_utr;
static bool print_blocks;
};
/*
* AltGene is a gene in the original sense. It can contain several transcripts (coding or not).
*
*/
class AltGene {
public:
list<Transcript*> transcripts;
int mincodstart; // leftmost position of any start codon (if coding)
int maxcodend; //
Strand strand;
string id;
string seqname;
float apostprob;
bool hasProbs;
AltGene() {
mincodstart = maxcodend = -1;
strand = plusstrand;
apostprob = 0.0;
hasProbs = 0;
}
bool operator< (const AltGene &other) const;
void addGene(Transcript* tx);
bool overlaps(Transcript *tx);
void shiftCoordinates(int d);
void sortTranscripts(int numkeep=-1);
void deleteSuboptimalTranscripts(bool uniqueCDS);
int minTransBegin();
int maxTransEnd();
bool isCoding(){ return transcripts.empty() || dynamic_cast<Gene*> (transcripts.front());}
};
Transcript* getPtr(list<AltGene> *gl);
void printGeneList(list<AltGene> *genelist, AnnoSequence *annoseq, bool withCS, bool withAA, bool withEvidence);
void printGeneList(Transcript* seq, AnnoSequence *annoseq, bool withCS, bool withAA);
void printGeneSequence(Transcript* seq, AnnoSequence *annoseq = NULL, bool withCS=false, bool withAA=true);
list<Gene*>* sortGenePtrList(list<Gene*>);
list<AltGene> *reverseGeneList(list<AltGene> *altGeneList, int endpos);
list<AltGene>* groupTranscriptsToGenes(list<Transcript*> &transcripts);
void reverseGeneSequence(Transcript* &seq, int endpos);
void postProcessGenes(list<AltGene> *genes, AnnoSequence *annoseq);
Gene* promoteToCoding(Transcript* tx, AnnoSequence *as); // make a coding gene from a non-coding if it contains a good ORF
class Annotation {
public:
Annotation() {
genes = lastGene = (Gene*) 0;
forwardGenes = backwardGenes = lastForwardGene = lastBackwardGene = (Gene*) 0;
forwardPath = condensedForwardPath = backwardPath = condensedBackwardPath = (StatePath*) 0;
path = condensedPath = (StatePath*) 0;
emiProb = 1.0;
forwardEmiProb = 1.0;
backwardEmiProb = 1.0;
}
~Annotation() {
Transcript::destroyGeneSequence(genes);
if (path)
delete path;
if (condensedPath)
delete condensedPath;
Transcript::destroyGeneSequence(forwardGenes);
Transcript::destroyGeneSequence(backwardGenes);
if (forwardPath)
delete forwardPath;
if (backwardPath)
delete backwardPath;
if (condensedForwardPath)
delete condensedForwardPath;
if (condensedBackwardPath)
delete condensedBackwardPath;
}
void appendGene(Transcript* gene);
void appendForwardGene(Transcript* gene);
void appendBackwardGene(Transcript* gene);
const void printGFF() const;
StatePath *path;
StatePath *condensedPath;
StatePath *forwardPath;
StatePath *backwardPath;
StatePath *condensedForwardPath;
StatePath *condensedBackwardPath;
Transcript *genes;
Transcript *forwardGenes;
Transcript *backwardGenes;
Double emiProb;
Double forwardEmiProb;
Double backwardEmiProb;
private:
Transcript *lastGene;
Transcript *lastForwardGene, *lastBackwardGene;
};
class AnnoSequence {
public:
AnnoSequence(){
length = 0;
sequence = 0;
seqname = 0;
next = (AnnoSequence*) 0;
anno = (Annotation*) 0;
weight = 1;
offset = 0;
}
~AnnoSequence(){
if (sequence)
delete[] sequence;
if (seqname)
delete [] seqname;
if (anno)
delete anno;
}
static void deleteSequence(AnnoSequence *head){
AnnoSequence* nextHead = head;
while(nextHead) {
head = nextHead;
nextHead = nextHead->next;
delete head;
}
}
void setWeight(int w) {
weight = w;
if (!anno)
return;
for (Transcript* t = anno->genes; t != NULL; t = t->next){
Gene *g = dynamic_cast<Gene*> (t);
if (g)
g->weight = w;
}
}
/*
* reverse complement the sequence and all genes
*/
AnnoSequence* getReverseComplement();
void printGFF();
char* seqname;
int length;
int offset; // if >0 this is the number of bases that have been cut out in the front of the original input sequence
char* sequence;
BaseCount bc;
AnnoSequence *next;
Annotation* anno;
int weight;
};
class AnnoSeqGeneIterator {
public:
AnnoSeqGeneIterator(const AnnoSequence* annoseqHead){
annoseq = annoseqHead;
while (annoseq && !(annoseq->anno && annoseq->anno->genes))
annoseq = annoseq->next;
if (annoseq)
gene = annoseq->anno->genes;
else
gene = NULL;
};
friend const AnnoSeqGeneIterator& operator++(AnnoSeqGeneIterator& gi);
bool hasMoreElements(){
return (annoseq != NULL && gene != NULL);
}
const AnnoSequence *annoseq;
const Transcript *gene;
};
class CompareStatePathPtr{
public:
CompareStatePathPtr(){ }
~CompareStatePathPtr(){ }
bool operator()(StatePath *first, StatePath *second){
return (first->pathemiProb > second->pathemiProb);
}
};
class StatePathCollection {
public:
StatePathCollection(){
sorted = false;
};
~StatePathCollection(){
StatePath *p;
while (!pathlist.empty()){
p = pathlist.front();
pathlist.pop_front();
delete p;
}
}
void addPath(StatePath *p){
if (!containsPath(p))
pathlist.push_back(p);
sorted = false;
}
int size(){
return pathlist.size();
}
void sort(){
pathlist.sort(CompareStatePathPtr());
sorted = true;
}
void printAPosterioriProbs(ostream& out) {
for(list<StatePath*>::iterator it=pathlist.begin(); it!=pathlist.end(); it++)
out << (*it)->pathemiProb << " , ";
out << endl;
}
bool containsPath(StatePath *p);
int positionInCollection(StatePath *p);
private:
list<StatePath*> pathlist;
bool sorted;
};
void examineBaseCountOfGeneSeq(AnnoSequence *as);
/* class CodonUsage: not used right now
class CodonUsage {
public:
CodonUsage(){
init();
}
CodonUsage(char *seq, int len, int frame=0){
init();
addCUofSeq(seq, len, frame);
}
CodonUsage(char *seq, int frame=0){
init();
addCUofSeq(seq, strlen(seq), frame=0);
}
CodonUsage(TrainingData *genedata){
init();
while (genedata) {
addCUofSeq(genedata->seq, genedata->seqLen, 0);
genedata = genedata->next;
}
computeUsage();
}
double meanLogProb(char *seq, int len, int frame=0);
void addCUofSeq(char *seq, int len, int frame=0);
void init();
void computeUsage();
void print(ostream &out);
private:
//GeneticCode code;
int codoncount[64];
double codonusage[64];
double logcodonusage[64];
double aaFrequencies[20];
};
//class CodonUsage
*/
class FreqSegment{
public:
FreqSegment(int s, int f){
start = s;
freq = f;
}
int start;
int freq;
};
#endif // _GENE_HH
|