1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
#!/usr/bin/perl
use strict;
use warnings;
use Getopt::Long; # for parameter specification on the command line
if (eval {require Statistics::R;1;} ne 1) { # for making R plots
# if module can't load
print "perl module Statistics::R not installed.\n";
print "Please install, e.g. via CPAN. On command line, type:\n\n";
print "perl -MCPAN -e 'install Statistics::R'\n";
} else {
Statistics::R->import();
}
my $usage = <<'ENDUSAGE';
eval_dualdecomp.pl evaluate the effectivness of dual decomposition either on a single
AUGUSTUS output file or a directory of AUGUSTUS output files.
SYNOPSIS
eval_dualdecomp.pl [ --f=input_file | --d=input_directory ]
--f=<file> intput AUGUSTUS file
--d=<dir> directory of input AUGUSTUS files (recognized by .out file extension)
OPTIONS
--help output this help message
--hist_iterations=<out.pdf> output histogram of iterations to out.pdf
--hist_errors=<out.pdf> output histogram of error estimates to out.pdf for all cases, where
no convergence is achieved.
--err_per_iter=<out.pdf> plots the average percentage of initial error against the iterations to out.pdf.
If after a certain number of iterations the error no further drops,
early stopping is recommended, i.e. in the next run, the number of
DD iterations can be restricted to this number of iterations.
--t=<foat> threshold for percentage of initial error. For all cases with an estimated
error higher than this threshold, the evolution of primal an dual values
are plotted against the iterations. This helps debugging cases with a
high error estimate. The threshold is between [0-100] (default: 5)
--outdir=<dir> put all plots in this output directory
DESCRIPTION
Example:
eval_dualdecomp.pl --d=augouts --hist_iterations=iterations.pdf --hist_errors=errors.pdf
eval_dualdecomp.pl --d=augouts --hist_iterations=iterations.pdf --hist_errors=errors.pdf --err_per_iter=error_per_iter.pdf --outdir=out
eval_dualdecomp.pl --f=aug.out --t=0
ENDUSAGE
my ($hist_iter, $hist_err, $err_per_iter, $DIR, $FILE, $help); # options
my $t = 5; # threshold for percentage of initial error
my @docs = ();
my $outdir = "";
GetOptions('d=s'=>\$DIR,
'f=s'=>\$FILE,
'hist_iterations=s' =>\$hist_iter,
'hist_errors=s' =>\$hist_err,
'err_per_iter=s' =>\$err_per_iter,
't=f' =>\$t,
'outdir=s' =>\$outdir,
'help!'=>\$help);
if (defined($DIR)){
$DIR =~ s/\/$//g;
opendir(my $DH, $DIR) or die "cannot open directory $DIR: $!";
@docs = grep(/\.out$/,readdir($DH));
@docs = map "$DIR/$_", @docs;
}
if (defined($FILE)){
push @docs, $FILE;
}
if(!defined($DIR) && !defined($FILE)){
print "either an input directory (option --d) or input file (option --f) is required.\n$usage";
exit(0);
}
if ($outdir ne ""){
system ("rm -rf $outdir; mkdir $outdir");
$outdir =~ s/([^\/])$/$1\//g;
}
my $id = 0; # gene range ID
my @avgErr = (); # average error per iteration
my @conv_iter = (); # stores number of iterations of all cases that did converge
my @conv_best_p = (); # stores the iterations of the best primal values of all cases that did converge
my @not_conv_iter = (); # stores number of iterations of all cases that did not converge
my @not_conv_best_p = (); # stores the iterations of the best primal values of all cases that did not converge
my @not_conv_error = (); # stores the estimated errors of all cases that did not converge
my $alreadyOpt = 0; # counts number of cases that are already optimal without DD
my @rounds = (); # number of cases that converged per round
# hash of gene ranges
# keys: gene range nr
# values: hash reference
# keys: iter array of iterations
# primal array of primal values
# dual array of dual values
# stepsize array if step sizes
# inconsistencies array of inconsistencies
my %geneRanges = ();
foreach my $file (@docs) {
open (RES, $file) or die "could not open file $file\n";
my $contents = 0;
while(<RES>){
if(/dual decomposition on gene Range (\d+)/){
$id++;
$geneRanges{$id} = {"iter"=>[], "primal"=>[], "dual"=>[], "stepsize"=>[]};
}
next if(!/^round\titer/ && !$contents);
if(/^dual decomposition reduced/){
my $numIter = scalar @{$geneRanges{$id}{"primal"}};
if($numIter <= 1){ # already optimal cases, no DD required
$alreadyOpt++;
$contents=0;
delete $geneRanges{$id};
next;
}
my ($idx_max, $max) = findMaxValueIndex(\@{$geneRanges{$id}{"primal"}});
my ($idx_min, $min) = findMinValueIndex(\@{$geneRanges{$id}{"dual"}});
# calculate percentage of initial error
my $perc_initial_err = ($min - @{$geneRanges{$id}{"primal"}}[0]) > 0 ? ($min - $max)*100 / ($min - $geneRanges{$id}{"primal"}->[0]) : 0;
if($perc_initial_err < 0){ # rounding error
$perc_initial_err = 0;
}
# plot dual and primal values against iterations for all gene ranges with an
# error greater than threshold t
if($perc_initial_err > $t){
plot_dual_vs_primal($perc_initial_err);
}
if($geneRanges{$id}{"inconsistencies"} == 0 || $min-$max < 1e-8){ # convergence achieved
push @conv_iter, $numIter;
push @conv_best_p, $idx_max;
$rounds[$geneRanges{$id}{"round"}]++;
}
else{ # not converged, stores errors
push @not_conv_error, $perc_initial_err;
push @not_conv_iter, $numIter;
push @not_conv_best_p, $idx_max;
}
delete $geneRanges{$id};
$contents=0;
next;
}
if($contents){
my @l = split(/\s+/,$_);
my ($round, $iteration, $stepsize, $primal, $dual, $inconsist) = ($l[0], $l[1], $l[2], $l[3], $l[4], $l[5]);
if(!defined($geneRanges{$id}{"total_iter"})){
$geneRanges{$id}{"total_iter"}=0;
}
else{
$geneRanges{$id}{"total_iter"}++;
}
$geneRanges{$id}{"round"} = $round;
push @{$geneRanges{$id}{"primal"}}, $primal;
push @{$geneRanges{$id}{"dual"}}, $dual;
push @{$geneRanges{$id}{"stepsize"}}, $stepsize;
$geneRanges{$id}{"inconsistencies"}=$inconsist;
if(!defined($geneRanges{$id}{"best_primal"}) || $geneRanges{$id}{"best_primal"} < $primal){
$geneRanges{$id}{"best_primal"} = $primal;
}
if(!defined($geneRanges{$id}{"best_dual"}) || $geneRanges{$id}{"best_dual"} > $dual){
$geneRanges{$id}{"best_dual"} = $dual;
}
my $best_d = $geneRanges{$id}{"best_dual"};
my $best_p = $geneRanges{$id}{"best_primal"};
my $initial_p = $geneRanges{$id}{"primal"}->[0];
my $e = 0;
if(($best_d - $initial_p) > 0){
$e = ($best_d - $best_p)*100 / ($best_d - $initial_p);
}
if($e < 0){
$e = 0; # rounding error
}
push @{$avgErr[$geneRanges{$id}{"total_iter"}]} , $e;
}
$contents=1;
}
}
my @iter = (@conv_iter, @not_conv_iter);
my @best_p = (@conv_best_p, @not_conv_best_p);
my ($idx_error, $max_error) = (0,0);
if(@not_conv_error){
($idx_error, $max_error) = findMaxValueIndex(\@not_conv_error);
}
my @total_error = (@not_conv_error, ((0) x (scalar @conv_iter)));
print "\n$alreadyOpt gene Ranges were discarded, because they were already optimal prior to Dual Decomposition\n\n";
printf("+-------------------------------------+----------+-----------+-----------+----------------------+ \n");
printf("| gene Ranges | No. | avg iter | avg error | max error | avg iter best primal |\n");
printf("+-------------------------------------+----------+-----------+-----------+----------------------+\n");
printf("| e-convergence | %6u (%6.2f%%) | %4u | %5.2f%% | %5.2f%% | %4u |\n", scalar @conv_iter, (scalar @conv_iter *100 / scalar @iter),avg(\@conv_iter),0,0,avg(\@conv_best_p));
printf("| no e-convergence | %6u (%6.2f%%) | %4u | %5.2f%% | %5.2f%% | %4u |\n", scalar @not_conv_iter, (scalar @not_conv_iter *100 / scalar @iter), avg(\@not_conv_iter), avg(\@not_conv_error), $max_error, avg(\@not_conv_best_p));
printf("+-------------------------------------+----------+-----------+-----------+----------------------+\n");
printf("| total | %6u (%6.2f%%) | %4u | %5.2f%% | %5.2f%% | %4u |\n", scalar @iter, 100, avg(\@iter), avg(\@total_error), $max_error, avg(\@best_p));
printf("+-------------------------------------+----------+-----------+-----------+----------------------+\n\n");
print "No. of e-convergences per round of Dual Decomposition\n\n";
foreach my $i (0 .. $#rounds) {
print "round $i - $rounds[$i]\n";
}
print "\nIf after n rounds the No. of e-convergences is only very small, the rounds\n";
print "can be restricted to n in the next run.\n\n";
# plot histogram of iterations
if(defined($hist_iter)){
my $R = Statistics::R->new();
$R->set('font',"Helvetica");
$R->set('filename', $outdir . $hist_iter);
$R->set('data',\@iter);
$R->run(q`(if(require(extrafont)){library(extrafont); font <- "LM Roman 10"})`);
$R->run(q`pdf(filename, family=font)`);
$R->run(q`par(cex.main=1.5, cex.lab=1.5, cex.axis=1.5, cex=1)`);
$R->run(q`hist(data,breaks=50,col="red",xlab="Iterations", main="")`);
$R->run(q`dev.off()`);
}
# plot histogram of errors
if(defined($hist_err) && @not_conv_error){
my $R = Statistics::R->new();
$R->set('filename', $outdir . $hist_err);
$R->set('font',"Helvetica");
$R->set('data',\@not_conv_error);
$R->run(q`(if(require(extrafont)){library(extrafont); font <- "LM Roman 10"})`);
$R->run(q`pdf(filename, family=font)`);
$R->run(q`par(cex.main=1.5, cex.lab=1.5, cex.axis=1.5, cex=1)`);
$R->run(q`hist(data,breaks=50,col="red",xlab="% of initial error", main="")`);
$R->run(q`dev.off()`);
}
# plot average percentage of initial error against iterations
if(defined($err_per_iter)){
my $n = scalar @{$avgErr[0]};
my @avgs = ();
for my $i (@avgErr){ # compute average error per iteration
my $avg = sum($i) / $n;
push @avgs, $avg;
if( scalar @avgs > 1 && ($avgs[$#avgs-1] - $avgs[$#avgs] < 0.00001)){
last;
}
}
my @x = (0..$#avgs);
my $R = Statistics::R->new();
$R->set('font',"Helvetica");
$R->set('avgs',\@avgs);
$R->set('iter',\@x);
$R->set('filename', $outdir . $err_per_iter);
$R->run(q`(if(require(extrafont)){library(extrafont); font <- "LM Roman 10"})`);
$R->run(q`pdf(filename, family=font)`);
$R->run(q`plot(iter,avgs, type="l", lwd=2, col="blue", ylim=c(min(avgs), max(avgs)), xlim=c(0,max(iter)), xlab=expression(paste("iteration ",italic(t))), ylab="average % of initial error", cex.axis=2, cex.lab=2, cex.main=2)`);
$R->run(q`dev.off()`);
}
# plot dual and primal values against iterations
sub plot_dual_vs_primal{
my $err = shift;
my $filename = $outdir . "gr_" . $id . ".pdf";
my @x = (0..$geneRanges{$id}{"total_iter"});
my $R = Statistics::R->new();
$R->set('font',"Helvetica");
$R->set('iter',\@x);
$R->set('primal',\@{$geneRanges{$id}{"primal"}});
$R->set('dual',\@{$geneRanges{$id}{"dual"}});
$R->set('filename', $filename);
$R->set('error', $err);
$R->run(q`(if(require(extrafont)){library(extrafont); font <- "LM Roman 10"})`);
$R->run(q`pdf(filename, family=font)`);
$R->run(q`plot(iter,primal, type="l", lwd=2, col="blue", ylim=c(min(primal), max(dual)), xlab=expression(paste("iteration ",italic(t))), ylab="value", cex.axis=2, cex.lab=2, main=bquote("Percentage of initial error" ~ italic(epsilon) == .(error) ~ "%"), cex.main=2)`);
$R->run(q`lines(iter,dual, type="l", lwd=2, col="red")`);
$R->run(q`legend("bottomright",c(expression(paste("current primal ",italic(p^t))),expression(paste("current dual ",italic(d^t)))),col=c("blue", "red"), lwd=c(2,2), cex=2, bty="n")`);
$R->run(q`points(iter[which.max(primal)], max(primal), cex = 1.5, pch = 20)`);
$R->run(q`text(iter[which.max(primal)], max(primal), labels = expression(italic(p)[best]), cex= 1.5, pos=3)`);
$R->run(q`dev.off()`);
}
sub findMaxValueIndex{
my $idx;
my $max;
my @array = @{$_[0]};
for my $i (0 .. $#array){
if(!defined($max) || $max < $array[$i]){
$idx = $i;
$max = $array[$i];
}
}
return ($idx, $max);
}
sub findMinValueIndex{
my $idx;
my $min;
my @array = @{$_[0]};
for my $i (0 .. $#array){
if(!defined($min) || $min > $array[$i]){
$idx = $i;
$min = $array[$i];
}
}
return ($idx, $min);
}
sub avg{
my @array = @{$_[0]};
if(@array){
my $sum = sum(\@array);
$sum /= scalar @array;
return $sum;
}
return 0;
}
sub sum{
my $sum = 0;
my @array = @{$_[0]};
for my $i (@array){
$sum+=$i;
}
return $sum;
}
|