1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
/*
* graph.hh
*
* License: Artistic License, see file LICENSE.TXT or
* https://opensource.org/licenses/artistic-license-1.0
*/
#ifndef _GRAPH_HH
#define _GRAPH_HH
#include <map>
#include <sstream>
#include <queue>
#include <iostream>
#include <stack>
#include "gene.hh"
#include "properties.hh"
#include "exoncand.hh"
using namespace std;
#define NUM_STATENAMES 6
/**
* @author Stefanie Nachtweide
*/
enum Statename{type_unknown=-1, CDS, utr3, utr5, intron, utr3Intron, utr5Intron};
extern string stateNameIdentifiers[NUM_STATENAMES];
/* types of nodes:
* sampled exons and introns: sampled
* additional exons, which are not sampled: unsampled_exons
* neutral nodes: IR, plus0, plus1, plus2, minus0, minus1, minus2 (for each of the 7 neutral lines one type)
* NOT_KNOWN: default type, for example head and tail
*/
#define NUM_NODETYPES 27
/**
* @brief types of nodes
* @details sampled exons and introns: sampled <br>
* additional exons, which are not sampled: unsampled_exons <br>
* neutral nodes: IR, plus0, plus1, plus2, minus0, minus1, minus2 (for each of the 7 neutral lines one type) <br>
* NOT_KNOWN: default type, for example head and tail <br>
*
* @author Stefanie Nachtweide
*/
enum NodeType{NOT_KNOWN=-1, IR,
plus0, plus1, plus2, minus0, minus1, minus2, T_plus1, TA_plus2, TG_plus2, T_minus1, C_minus1, YY_minus0, // intron types between two CDS exons
ncintr, rncintr, // intron between two non-coding exons
utr5intr, TLstart, TLstop, utr3intr, rutr5intr, rTLstart, rTLstop, rutr3intr, utrExon, // utr types
sampled, unsampled_exon}; // CDS types
extern string nodeTypeIdentifiers[NUM_NODETYPES];
/**
* @brief Status stores all the relevant information (for states) from the program specific datastructure
*
* @author Stefanie Nachtweide
*/
class Status;
/**
* @author Stefanie Nachtweide
*/
class Node;
/**
* @author Stefanie Nachtweide
*/
class Edge;
/**
* @author Stefanie Nachtweide
*/
class Graph;
class Status{
public:
Status(Statename s=type_unknown, int b=0, int e=0, double sc=0.0, const void *it=NULL, Status *n=NULL):
name(s),
begin(b),
end(e),
score(sc),
next(n),
item(it)
{}
Statename name;
int begin, end;
double score;
Status *next;
const void *item;
bool isIntron() const {return (name >= intron);}
bool isExon() const {return (name >= CDS && name <= utr5);}
bool isCDS() const {return (name == CDS);}
bool isUTR() const {return (name == utr3 || name == utr5);}
float getPostProb() const {return (item)? ((State*)item)->apostprob : 0.0;}
int getLen() const {return end-begin+1;}
int getFrame() const {return isCDS()? ((State*)item)->frame() : -1;}
bool hasEvidence() const {return ((State*)item)->evidence;}
bool hasEvidence(string srcname) const; //returns true if the exon/intron has evidence from src="srcname"
int numEvidence() const {return hasEvidence()? ((State*)item)->evidence->numEvidence : 0;}
};
bool isTlstartOrstop(Status *predExon, Status *succExon);
class Node{
public:
Node(int s=0, int e=0, float sc=0.0, const void *it=NULL, NodeType t=NOT_KNOWN, Node *p=NULL, bool b=0, Node *nn=NULL, Node *pn=NULL):
begin(s),
end(e),
score(sc),
item(it),
n_type(t),
pred(p),
label(b),
nextNontrivialNeutNode(nn),
prevNontrivialNeutNode(pn)
{}
int begin, end;
float score;
const void *item;
NodeType n_type;
Node *pred;
bool label; // label is 1, if node is in path, else label is 0
list<Edge> edges;
Node *nextNontrivialNeutNode; // pointer to Node on neutral line, which is the nearest that can be reached by a nontrivial way (used for new back edges)
Node *prevNontrivialNeutNode; // pointer to Node on neutral line, from which the actual node is the nearest that can be reached by a nontrivial way (used for new back edges)
size_t index; // (used for new back edges) (used for tarjan)
size_t lowlink; // (used for tarjan)
StateType castToStateType(); //casts void* back to State* and returns the StateType
void addWeight(float weight); //add weight to all outgoing edges
Edge* getEdge(Node* succ);
State* getIntron(Node* succ);
bool isSampled() const {return(n_type == sampled || n_type == utrExon);}
};
class Edge{
public:
Edge(Node *t=NULL, bool n=true, float sc=0.0, const void *it=NULL):
to(t),
score(sc),
neutral(n),
item(it)
{}
Node *to;
float score;
bool neutral;
const void *item;
inline bool isSampledIntron(){
return item;
}
};
//print functions for Nodes and Edges
ostream& operator<<(ostream& ostrm, Node *node);
ostream& operator<<(ostream& ostrm, const Edge &edge);
/*
* ordering needed by statelist:
* the states of the sampled genes need to be together ordered after their beginning for each gene.
* example: 5'UTR-CDS-intron-CDS-intron-CDS-3'UTR-5'UTR-CDS-intron-CDS-3'UTR
* here we have 2 Genes and states in order of appearance
*/
class Graph{
public:
Graph(list<Status> *states) : statelist(states) {}
virtual ~Graph();
void addBackEdges();
void addBackEdgesComp();
void tarjan(); // Tarjan's strongly connected components algorithm
void tarjanAlg(Node* from, stack<Node*> &S, size_t &index);
list<Node*> nodelist; //stores all nodes belonging to the graph
list<Status> *statelist;
int min, max;
map<string,Node*> existingNodes;
Node *head;
Node *tail;
void buildGraph(); //needs to be called in constructor of derived class
template<class T> inline bool alreadyProcessed(T *temp){
return(existingNodes[getKey(temp)]!=NULL);
}
inline bool alreadyProcessed(string key){
return(existingNodes[key]!=NULL);
}
template<class T> inline Node* getNode(T *temp){
return existingNodes[getKey(temp)];
}
inline Node* getNode(string key){
return existingNodes[key];
}
// functions needed to build the graph
protected:
bool edgeExists(Node *e1, Node *e2);
inline void addToHash(Node *n){
existingNodes[getKey(n)] = n;
}
Node* addExon(Status *exon, vector<Node*> &neutralLine);
void addPair(Status *exon1, Status *exon2, vector<Node*> &neutralLine);
void createNeutralLine(vector<Node*> &neutralLine, double weight=0.0, bool onlyComplete=false);
void addCompatibleEdges();
void insertIntron(Node *exon1, Node *exon2);
int minInQueue(queue<Node*> *q);
bool nonneutralIncomingEdge(Node *exon);
void printGraphToShell();
void getSizeNeutralLine();
void addWeightToEdge();
// program specific functions
virtual bool exonAtGeneStart(Status *st)=0;
virtual bool exonAtGeneEnd(Status *st)=0;
virtual string getKey(Node *n)=0;
virtual string getKey(Status *st)=0;
virtual string getKey(State *st)=0;
virtual string getKey(ExonCandidate *exoncand)=0;
virtual double getIntronScore(Status *predExon, Status *nextExon)=0;
virtual void addEdgeFromHead(Status *exon)=0;
virtual void addEdgeToTail(Status *exon)=0;
virtual bool compatible(Node *exon1, Node *exon2)=0;
virtual double setScore(Status *st)=0;
virtual void calculateBaseScores()=0;
virtual void printGraph(string filename)=0;
virtual void printGraph2(string filename)=0;
virtual bool mergedStopcodon(Node* exon1, Node* exon2)=0;
virtual bool mergedStopcodon(Status* exon1, Status* exon2)=0;
virtual bool mergedStopcodon(StateType type1, StateType type2, int end1, int begin2)=0;
virtual float getAvgBaseProb(Status *st) =0;
virtual float getAvgBaseProb(ExonCandidate *ec)=0;
};
/**
* @author Stefanie Nachtweide
*/
class AugustusGraph : public Graph{
public:
AugustusGraph(list<Status> *states, const char* dna) : Graph(states), sequence(dna), seqlength(strlen(dna)){
try {
utr = Properties::getBoolProperty("UTR");
} catch (...) {
utr = false;
}
try {
alpha_e = Properties::getdoubleProperty("/MeaPrediction/alpha_E");
} catch (...) {
alpha_e = 1;
}
try {
alpha_i = Properties::getdoubleProperty("/MeaPrediction/alpha_I");
} catch (...) {
alpha_i = 1;
}
try {
x0_e = Properties::getdoubleProperty("/MeaPrediction/x0_E");
} catch (...) {
x0_e = -10;
}
try {
x0_i = Properties::getdoubleProperty("/MeaPrediction/x0_I");
} catch (...) {
x0_i = -10;
}
try {
x1_e = Properties::getdoubleProperty("/MeaPrediction/x1_E");
} catch (...) {
x1_e = 10;
}
try {
x1_i = Properties::getdoubleProperty("/MeaPrediction/x1_I");
} catch (...) {
x1_i = 10;
}
try {
y0_e = Properties::getdoubleProperty("/MeaPrediction/y0_E");
} catch (...) {
y0_e = 0.5;
}
try {
y0_i = Properties::getdoubleProperty("/MeaPrediction/y0_I");
} catch (...) {
y0_i = 0.5;
}
try {
i1_e = Properties::getdoubleProperty("/MeaPrediction/i1_E");
} catch (...) {
i1_e = 0.25;
}
try {
i1_i = Properties::getdoubleProperty("/MeaPrediction/i1_I");
} catch (...) {
i1_i = 0.25;
}
try {
i2_e = Properties::getdoubleProperty("/MeaPrediction/i2_E");
} catch (...) {
i2_e = 0.75;
}
try {
i2_i = Properties::getdoubleProperty("/MeaPrediction/i2_I");
} catch (...) {
i2_i = 0.75;
}
try {
j1_e = Properties::getdoubleProperty("/MeaPrediction/j1_E");
} catch (...) {
j1_e = -5;
}
try {
j1_i = Properties::getdoubleProperty("/MeaPrediction/j1_I");
} catch (...) {
j1_i = -5;
}
try {
j2_e = Properties::getdoubleProperty("/MeaPrediction/j2_E");
} catch (...) {
j2_e = 5;
}
try {
j2_i = Properties::getdoubleProperty("/MeaPrediction/j2_I");
} catch (...) {
j2_i = 5;
}
try {
r_be = Properties::getdoubleProperty("/MeaPrediction/r_be"); // threshold for exons on base level
} catch (...) {
r_be = 0.5;
}
try {
r_bi = Properties::getdoubleProperty("/MeaPrediction/r_bi"); // threshold for introns on base level
} catch (...) {
r_bi = 0.5;
}
for(int i = 0; i < seqlength*10; i++)
baseScore.push_back(0);
}
bool exonAtGeneStart(Status *st);
bool exonAtGeneEnd(Status *st);
bool exonAtCodingStart(Node *st);
bool exonAtCodingEnd(Node *st);
string getKey(Node *n);
string getKey(Status *st);
string getKey(State *st);
string getKey(ExonCandidate *exoncand);
double getIntronScore(Status *predExon, Status *nextExon);
void addEdgeFromHead(Status *exon);
void addEdgeToTail(Status *exon);
bool compatible(Node *exon1, Node *exon2);
bool sameStrand(StateType typeA, StateType typeB);
bool sameReadingFrame(Node *e1, Node *e2);
void calculateBaseScores();
double setScore(Status *st);
int getBasetype(Status *st, int pos);
void printGraph(string filename);
void printGraph2(string filename);
bool mergedStopcodon(Node* exon1, Node* exon2);
bool mergedStopcodon(Status* exon1, Status* exon2);
bool mergedStopcodon(StateType type1, StateType type2, int end1, int begin2);
void getPoints(Status *st, double p, double *a1, double *a2, double *b1, double *b2);
float getAvgBaseProb(Status *st);
float getAvgBaseProb(ExonCandidate *ec);
const char* sequence;
int seqlength;
vector<double> baseScore;
bool utr;
// parameters for scores
double alpha_e;
double alpha_i;
double x0_e;
double x0_i;
double x1_e;
double x1_i;
double y0_e;
double y0_i;
double i1_e;
double i1_i;
double i2_e;
double i2_i;
double j1_e;
double j1_i;
double j2_e;
double j2_i;
double r_be;
double r_bi;
};
bool compareNodes(Node *first, Node *second);
bool compareEdges(Edge first, Edge second);
bool compareNodeEnds(const Node *first, const Node *second);
template <class T>
inline string to_string (const T& t)
{
stringstream ss;
ss << t;
return ss.str();
}
#endif
|