File: SplicedAlignment.pm

package info (click to toggle)
augustus 3.5.0%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 777,052 kB
  • sloc: cpp: 80,066; perl: 21,491; python: 4,368; ansic: 1,244; makefile: 1,141; sh: 171; javascript: 32
file content (413 lines) | stat: -rwxr-xr-x 12,247 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# Mario Stanke, August 17th, 2005

package SplicedAlignment;
use strict;
use locale;

#
# constants/thresholds
#

my $min_alilen      = 300;   # minimum total length of the aligned regions
my $min_cdslen      = 300;   # minimum total length of the inferred coding region
my $min_exonquality = 0.80;  # minimum percentage identity for each aligned region
my $min_avrgquality = 0.90;  # minimum percentage identity of complete aligned regions
my $min_intron_len  = 30;    # minimum length of all introns

#
# class SplicedAlignment
#

sub new {
    my $class = shift;
    my $self = {};
    bless ($self, $class);
    $self->{numexons}=0;
    $self->{estExonBegins}=();
    $self->{estExonEnds}=();
    $self->{exonBegins}=();
    $self->{exonEnds}=();
    $self->{qualities}=();
    $self->{intronFlag}=();
    $self->{estName} = shift;
    $self->{estLength} = shift;
    $self->{strand} = ".";
    $self->{genomicName} = shift;
    $self->{genomicLength} = shift;
    $self->{complement} = shift;
    $self->{status} = "OK";
    $self->{hasCDS} = 0;
    $self->{c5p} = 0;
    $self->{c3p} = 0;
    $self->{cdsBegins} = ();
    $self->{cdsEnds} = ();
    $self->{aliLen} = 0;
    $self->{codinglen} = 0;
    $self->{spliced5pUTR} = 0;
    $self->{spliced3pUTR} = 0;
    return $self;
}


#
# member functions
#


sub get_status {
    my $self = shift;
    return $self->{status};
}

sub get_contigname {
    my $self = shift;
    return $self->{genomicName};
}

sub get_complete5prime {
    my $self = shift;
    return $self->{c5p};
}

sub get_complete3prime {
    my $self = shift;
    return $self->{c3p};
}

sub addExon {
    my $self = shift;
    $self->{numexons}++;
    push @{$self->{estExonBegins}}, shift;
    push @{$self->{estExonEnds}}, shift;
    push @{$self->{exonBegins}}, shift;
    push @{$self->{exonEnds}}, shift;
    push @{$self->{qualities}}, shift; 
    push @{$self->{intronFlag}}, shift; 
}

sub checkAlignment {
    my $self = shift;
    
    # check whether there is an alignment at all
    if ($self->{numexons} == 0){
	$self->{status} = "no alignment found";
    }
    
    # check if there are no gaps in the aligned EST sequence
    # set strand if indicated by introns 
    foreach my $intronstatus (@{$self->{intronFlag}}){
	if ($intronstatus eq "=="){
	    $self->{status} = "not spliced alignment";
	    return;
	}
	if ($intronstatus eq "->"){
	    if ($self->{strand} eq '.') {
		$self->{strand} = '+';
	    } elsif ($self->{strand} eq '-') {
		$self->{status} = "inconsistent splice sites";
		return;
	    }
	}
	if ($intronstatus eq "<-"){
	    if ($self->{strand} eq '.') {
		$self->{strand} = '-';
	    } elsif ($self->{strand} eq '+') {
		$self->{status} = "inconsistent splice sites";
		return;
	    }
	}
    }
    # check intron lengths
    for (my $i=0; $i<$self->{numexons}-1; $i++){
	if($self->{exonBegins}[$i+1] - $self->{exonEnds}[$i] - 1 < $min_intron_len){
	   $self->{status} = "intron too short";
	   return;
	} 
    }

    # determine alignment length
    $self->{aliLen} = 0;
    for (my $i=0; $i<$self->{numexons}; $i++){
	$self->{aliLen} += $self->{exonEnds}[$i] - $self->{exonBegins}[$i] + 1; 
    }
    
    print STDERR "$self->{genomicName}:$self->{estName}\talignment length = $self->{aliLen}\n";
    if ($self->{aliLen} < $min_alilen) {
	$self->{status} = "alignment too short";
	return;
    }
    
    # determine average alignment quality
    # dicard spliced alignment if any exon quality is below 80% 
    # or the average quality is below 90%
    my $avqual=0;
    for (my $i=0; $i<$self->{numexons}; $i++){
	$avqual += ($self->{estExonEnds}[$i] - $self->{estExonBegins}[$i] + 1) * $self->{qualities}[$i];
	if ($self->{qualities}[$i] < $min_exonquality){
	    $self->{status} = "bad alignment quality";
	}
    }
    $avqual /= $self->{aliLen};
    print STDERR "average quality = $avqual\n";
    if ($avqual < $min_avrgquality) {
	$self->{status} = "bad alignment quality";
    }
    if ($self->{status} eq "bad alignment quality"){
	return;
    }
    
    $self->{status} = "OK";
}

sub makeGene {
    my $self = shift;
    my $seq = shift;
    if (length $seq != $self->{genomicLength}) {
	alert("Error in sequence $self->{genomicName}:$self->{estName}. Sequence length " . (length $seq) . " != $self->{genomicLength}");
    }
    #print STDERR "seq =$seq\n";    
    #construct the presumable mrna sequence
    my $mrna="";
    for (my $i=0; $i<$self->{numexons}; $i++) {
	$mrna .= substr $seq, $self->{exonBegins}[$i], $self->{exonEnds}[$i] - $self->{exonBegins}[$i]+1;
    } 
    my ($ORFbegin, $ORFend, $complete5prime, $start, $complete3prime) = findLongestORF($mrna, $self->{strand});
    print STDERR "findLongestORF: " , $ORFbegin, ", ", $ORFend, ", ", $complete5prime, ", ", $start, ", ", $complete3prime, "\n"; 

    $self->{strand} = ($ORFbegin < $ORFend) ? '+' : '-';
    $self->{c5p}=$complete5prime;
    $self->{c3p}=$complete3prime;
    print STDERR "ORF: $ORFbegin-$ORFend\n";
    # construct the CDS exons by mapping the mRNA back to the genomic region
    my ($mrnaseen, $cdsseen, $offset, $i);
    if ($self->{strand} eq '+') { # forward strand gene
	$mrnaseen = $self->{exonEnds}[0] - $self->{exonBegins}[0]+1;
	$cdsseen = 0;
	$offset = $complete5prime? $start : $ORFbegin;
	$self->{codinglen} = 1 + $ORFend - ($complete5prime? $start : $ORFbegin);
	$i = 0;
	while ($mrnaseen < $offset) {
	    $i++;
	    $mrnaseen += $self->{exonEnds}[$i] - $self->{exonBegins}[$i] + 1;
	}
	push @{$self->{cdsBegins}},  $self->{exonEnds}[$i] - ($mrnaseen - $offset) + 1;
	$cdsseen = $mrnaseen - $offset;
	while ($cdsseen < $self->{codinglen}){
	    push @{$self->{cdsEnds}},  $self->{exonEnds}[$i];
	    $i++;
	    push @{$self->{cdsBegins}}, $self->{exonBegins}[$i];
	    $cdsseen += $self->{exonEnds}[$i]-$self->{exonBegins}[$i]+1;
	}
	push @{$self->{cdsEnds}},  $self->{exonEnds}[$i]-($cdsseen-$self->{codinglen});
    } else { # reverse strand gene
	$mrnaseen = $self->{exonEnds}[$self->{numexons}-1] - $self->{exonBegins}[$self->{numexons}-1] + 1;
	$cdsseen = 0;
	$offset = (length $mrna) - ($complete5prime? $start : $ORFbegin) - 1;
	$self->{codinglen} = 1 + ($complete5prime? $start : $ORFbegin) - $ORFend;
	$i = $self->{numexons}-1;
	while ($mrnaseen < $offset) {
	    $i--;
	    $mrnaseen += $self->{exonEnds}[$i] - $self->{exonBegins}[$i] + 1;
	}
	unshift @{$self->{cdsEnds}}, $self->{exonBegins}[$i] + ($mrnaseen - $offset) - 1;
	$cdsseen = $mrnaseen - $offset;
	while ($cdsseen < $self->{codinglen}){
	    unshift @{$self->{cdsBegins}},  $self->{exonBegins}[$i];
	    $i--;
	    unshift @{$self->{cdsEnds}}, $self->{exonEnds}[$i];
	    $cdsseen += $self->{exonEnds}[$i]-$self->{exonBegins}[$i]+1;
	}
	unshift @{$self->{cdsBegins}},  $self->{exonBegins}[$i] + ($cdsseen-$self->{codinglen});
    }
    $self->{hasCDS} = 1;
    if ($self->{codinglen} < $min_cdslen){
	$self->{status} = "short CDS";
    }
}

sub findSplicedUTR {
    my $self = shift;
    if($self->{hasCDS}){
	# find spliced 5' UTR
	if ($self->{c5p}){
	    if ((($self->{strand} eq "+") && ($self->{exonEnds}[0] < $self->{cdsBegins}[0])) ||
		(($self->{strand} eq "-") && ($self->{exonBegins}[$#{$self->{exonBegins}}] > $self->{cdsEnds}[$#{$self->{cdsEnds}}]))){
		$self->{spliced5pUTR}=1;
	    }
	}
	# find spliced 3' UTR
	if ($self->{c3p}){
	    if ((($self->{strand} eq "+") && $self->{exonBegins}[$#{$self->{exonBegins}}] > $self->{cdsEnds}[$#{$self->{cdsEnds}}])||
		(($self->{strand} eq "-") && ($self->{exonEnds}[0] < $self->{cdsBegins}[0]))){
		$self->{spliced3pUTR}=1;
	    }
	}
    }
}

sub output {
    my $self = shift;
    my $outstring="";
    $outstring .= "# sequence $self->{genomicName}, len=$self->{genomicLength}\n";
    $outstring .= "# gene constructed from EST: $self->{estName}, len=$self->{estLength}, ";
    if ($self->{complement}){
	$outstring .= "(other strand)";
    } else {
	$outstring .= "(same strand)";
    }
    if ($self->{hasCDS}){
	if ($self->{c5p} && $self->{c3p}) {
	    $outstring .= ", CDS complete";
	} elsif ($self->{c5p} && !$self->{c3p}) {
	    $outstring .= ", CDS incomplete at 3'";
	} elsif (!$self->{c5p} && $self->{c3p}) {
	    $outstring .= ", CDS incomplete at 5'";
	} else {
	    $outstring .= ", CDS incomplete at both ends";
	}
    }
    if ($self->{spliced5pUTR}) {
	$outstring .= ", spliced 5'UTR";
    }
    if ($self->{spliced3pUTR}) {
	$outstring .= ", spliced 3'UTR";
    }

    $outstring .= "\n# alignment length = " . $self->{aliLen}. ", coding length = " . $self->{codinglen} ."\n";
    for (my $i=0; $i<$self->{numexons}; $i++) {
	$outstring .= "$self->{genomicName}\tmario\tmrna\t";
	$outstring .= (1+$self->{exonBegins}[$i]) . "\t";
	$outstring .= (1+$self->{exonEnds}[$i]) . "\t";
	$outstring .= "$self->{qualities}[$i]\t";
	$outstring .= "$self->{strand}\t";
	$outstring .= ".\t";
	$outstring .= "gene_id=\"$self->{genomicName}:$self->{estName}\";";
	$outstring .= "EST=" . ($self->{estExonBegins}[$i]+1). "-" . ($self->{estExonEnds}[$i]+1) . ";";
	if ($self->{intronFlag}[$i] ne ""){
	    $outstring .= "intronflag=$self->{intronFlag}[$i];";
	}
	$outstring .= "\n";
    }
    if ($self->{hasCDS}){
	for (my $i=0; $i<=$#{$self->{cdsBegins}}; $i++) {
	    $outstring .= "$self->{genomicName}\tmario\tCDS\t";
	    $outstring .= (1+$self->{cdsBegins}[$i]) . "\t";
	    $outstring .= (1+$self->{cdsEnds}[$i]) . "\t";
	    $outstring .= ".\t";
	    $outstring .= "$self->{strand}\t";
	    $outstring .= ".\t";
	    $outstring .= "gene_id=\"$self->{genomicName}:$self->{estName}\";";
	    $outstring .= "\n";
	}
    }
    return $outstring;
}

#
# non-member functions
#

#
# find longes open reading frame in sequence
#
# if begin < end it is on the forward strand
# if begin > end it is on the reverse strand

sub findLongestORF {
    my $mrna = shift;
    my $strand = shift;
    my $n = length $mrna;
    my ($begin, $end, $complete5prime, $start, $complete3prime) = findLongestORFOnPlusstrand($mrna);
    # print "plus  longest orf $begin, $end\n";
    my $rcmrna = reverseComplement($mrna);
    my ($b, $e, $c5p, $s, $c3p) = findLongestORFOnPlusstrand($rcmrna);
    # print "minus longest orf $b, $e\n";
    if (($strand eq '-' || ($strand eq '.' && $e-$b > $end-$begin))) {
	$begin = $n-1 - $b;
	$end = $n-1 - $e;
	$complete5prime=$c5p;
	$start=$n-1 - $s;
	$complete3prime=$c3p;
    }
    return ($begin, $end, $complete5prime, $start, $complete3prime);
}

sub findLongestORFOnPlusstrand {
    my $mrna = shift;
    my $begin=0;
    my $end=0;
    my $complete5prime=0; # boolean
    my $complete3prime=0; # boolean
    my $start =-1; # position of the start codon
    my ($curbegin, $curend);
    my $n = length $mrna;

    my @stppos = ((),(),());
    while($mrna =~ /taa|tga|tag/icg){
	my $m = $-[0];
	push @{$stppos[$m % 3]}, $m;
    }
    # print STDERR "mrna=$mrna\n";
    
    for (my $rf=0; $rf<3; $rf++){
	my $last = $n - ($n % 3) + $rf;
	if ($last>$n) {
	    $last -= 3;
	}
	push @{$stppos[$rf]}, $last;
	#print STDERR "rf=$rf, ", (join " ", @{$stppos[$rf]}), "\n";

	$curbegin = $rf;
	$curend = $curbegin;
	while($curend = shift @{$stppos[$rf]}){
	    next unless ($curend % 3 == $rf);
	    if ($curend-$curbegin > $end-$begin) {
		$end = $curend;
		$begin = $curbegin;
	    }
	    $curbegin=$curend;
	}
    }
    # check whether the ORF is complete at the 3 prime end
    if ($end < $n-2) {
	$complete3prime=1;
	$end += 3;
    }
    # check whether the ORF is likely to be complete at the 5 prime end
    # by checking whether there is another in-frame stop codon upstream of the start codon.
    if ($begin>2){
	$complete5prime=1;
	$begin += 3; # skip the stop codon
    }
    $start = $begin;
    while ($start<$end && (uc(substr $mrna, $start, 3) ne "ATG")){
	$start += 3;
    }
    if ($start >= $end){
	$complete5prime=0;
	$start = $begin;
	print STDERR "no ATG in the largest ORF\n";
    }

    return ($begin, $end-1, $complete5prime, $start, $complete3prime);
}

sub reverseComplement {
    my $seq = shift;
    my $rc = "";
    my %rcmap = ('A' => 'T', 'a' => 'T',
		 'C' => 'G', 'c' => 'G',
		 'G' => 'C', 'g' => 'C',
		 'T' => 'A', 't' => 'T');
    foreach my $char (split "", reverse $seq) {
	if ($rcmap{$char}) {
	    $rc .= $rcmap{$char};
	} else {
	    $rc .= 'n';
	}
    }
    return $rc;
}

1;