1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
|
#!/usr/bin/env python3
import subprocess
import re
import json
import os
import shutil
import argparse
import fileinput
import filecmp
import sys
import random
from datetime import datetime
import numpy as np
# author Giovanna Migliorelli
# version beta 25.05.2020
# the code comes as a modification of original Augustus/longrunning_examples/execute_test.py script by Daniel Honsel
# todo 0 extend basic test about code correctness
# done 1 randomly pick chunks to build the test set avoiding any bias
# done 2 merge different chunks (join genes)
# done 3 parallelize
# todo 4 replace call to shell script with pybedtools
parser = argparse.ArgumentParser(description='Execute Augustus long running test cases.')
parser.add_argument('-p', '--predict', action='store_true',
help='to run original prediction.')
parser.add_argument('-e', '--prepare', action='store_true',
help='to build a new test set from scratch.')
parser.add_argument('-o', '--port', action='store_true',
help='to build a new test set from scratch.')
parser.add_argument('-r', '--run', action='store_true',
help='to run prediction using minimal data set.')
parser.add_argument('-v', '--eval', action='store_true',
help='to evaluate accuracy (respect to the last prediction obtained by launching the script with --run option).')
parser.add_argument('-c', '--chunks',
#required=True,
nargs='+',
help='a list of one or more positive integers indicating the chunk/s to be processed (refer to documentation for a list of chunks over hg38.chr1).')
parser.add_argument('-t', '--test', action='store_true',
help='to run a basic test to assess the correctness in the creation of the minimal data set.')
parser.add_argument('-a', '--rand',
help='to pick a random subset of non overlapping chunks containing at least 300 genes.')
parser.add_argument('-g', '--augustusDir',
help='path to comparative Augustus executable.')
parser.add_argument('-l', '--evalDir',
help='path to Eval script.')
parser.add_argument('-w', '--workingDir',
help='path to data set used in testing (link).')
args = parser.parse_args()
# if not already existing, create dir to collect results for the current chunk
def make_dirs(paths_shared, paths, chunks):
for chunk in chunks:
if os.path.exists(paths[chunk]['result_dir']) == False:
os.makedirs(paths[chunk]['result_dir'])
if os.path.exists(paths_shared['accuracy']) == False:
os.makedirs(paths_shared['accuracy'])
if os.path.exists(paths_shared['joingenes_out_dir']) == False:
os.makedirs(paths_shared['joingenes_out_dir'])
# extract minimal FASTAs on the base of gene ranges (BEDs) and prepare sqlitedb
def make_sqlitedb(paths_shared, paths, chunk):
cleanup_db(paths, chunk)
print('Creating minimal FASTAs and SQLite database for current chunk...', paths_shared['bedtool_bin'])
# extract minimal FASTAs
# todo replace the following with pybedtools
subprocess.call([paths_shared['working_dir'] + 'extractFASTA.sh', paths_shared['bedtool_bin'], paths_shared['fasta_dir'], paths_shared['working_dir'], str(chunk), paths[chunk]['sqlitedb_dir']])
for species in ['hg38', 'rheMac3', 'mm10', 'rn6', 'oryCun2', 'bosTau8', 'canFam3', 'loxAfr3', 'echTel2', 'dasNov3', 'monDom5', 'galGal4']:
# replace characters ':' and '-' with '_'
for line in fileinput.input(paths[chunk]['sqlitedb_dir'] + species + '.MINIMAL.fasta', inplace=True):
print(line.replace(':', "_").replace('-', "_"))
# add sepcies to SQLite db
cmd = [paths_shared['augustus_dir'] + 'bin/load2sqlitedb', '--dbaccess=' + paths[chunk]['sqlitedb_test_file'], '--species=' + species, paths[chunk]['sqlitedb_dir'] + species + '.MINIMAL.fasta']
execute(cmd, paths[chunk]['result_dir'] + 'out.createMinimalFASTA', mode ='a+')
def port_sqlitedb(paths_shared, paths, chunk):
cleanup_db(paths, chunk, False)
for species in ['hg38', 'rheMac3', 'mm10', 'rn6', 'oryCun2', 'bosTau8', 'canFam3', 'loxAfr3', 'echTel2', 'dasNov3', 'monDom5', 'galGal4']:
# add sepcies to SQLite db
cmd = [paths_shared['augustus_dir'] + 'bin/load2sqlitedb', '--dbaccess=' + paths[chunk]['sqlitedb_test_file'], '--species=' + species, paths[chunk]['sqlitedb_dir'] + species + '.MINIMAL.fasta']
execute(cmd, paths[chunk]['result_dir'] + 'out.createMinimalFASTA', mode ='a+')
# create new genomes.tbl for this chunk
def make_genometbl_chunk(paths, chunk):
cleanup_tbl_chunk(paths, chunk)
print('Creating new genome tbl for current chunk...', paths[chunk]['tbl_test_file'])
with open(paths[chunk]['tbl_test_file'], 'w') as f:
for species in ['hg38', 'rheMac3', 'mm10', 'rn6', 'oryCun2', 'bosTau8', 'canFam3', 'loxAfr3', 'echTel2', 'dasNov3', 'monDom5', 'galGal4']:
print(species, paths[chunk]['sqlitedb_dir'] + species + '.MINIMAL.fasta', sep='\t', file=f)
# create genomes.tbl for full size genomes
def make_genometbl(paths_shared):
cleanup_tbl(paths_shared)
print('Creating new genome tbl for full size genomes')
with open(paths_shared['fasta_dir'], 'w') as f:
for species in ['hg38', 'rheMac3', 'mm10', 'rn6', 'oryCun2', 'bosTau8', 'canFam3', 'loxAfr3', 'echTel2', 'dasNov3', 'monDom5', 'galGal4']:
print(species, paths_shared['fasta_dir'] + species + '.fasta', sep='\t', file=f)
def cleanup_db(paths, chunk, removeFASTA = True):
print('Cleaning up', paths[chunk]['sqlitedb_dir'])
if removeFASTA:
if os.path.exists(paths[chunk]['sqlitedb_dir']):
shutil.rmtree(paths[chunk]['sqlitedb_dir'])
os.makedirs(paths[chunk]['sqlitedb_dir'])
print('Cleaning up', paths[chunk]['sqlitedb_test_file'])
if os.path.exists(paths[chunk]['sqlitedb_test_file']):
os.remove(paths[chunk]['sqlitedb_test_file'])
def cleanup_tbl_chunk(paths, chunk):
print('Cleaning up', paths[chunk]['tbl_test_file'])
if os.path.exists(paths[chunk]['tbl_test_file']):
os.remove(paths[chunk]['tbl_test_file'])
def cleanup_tbl(paths_shared):
print('Cleaning up', paths_shared['tbl_file'])
if os.path.exists(paths_shared['tbl_file']):
os.remove(paths_shared['tbl_file'])
# runs original prediction over full length genomes (used only for a basic test about correctness of the code)
def run_prediction(paths, chunk):
print('Runnning prediction on chunk', chunk, '...')
cmd = [paths_shared['augustus_bin'], '--species=human', '--treefile=' + paths_shared['tree_file'], '--alnfile=' + paths[chunk]['maf_file'],
'--speciesfilenames=' + paths_shared['tbl_file'], '--softmasking=1', '--alternatives-from-evidence=0', '--dbaccess=' + paths_shared['sqlitedb_file'],
'--optCfgFile=../config/cgp/cgp_param_21features_accuracy_largerGrid.convDivCorrect.cfg',
'--stopCodonExcludedFromCDS=true', '--/CompPred/logreg=on', '--/CompPred/outdir=' + paths_shared['working_dir'] + 'out' + str(chunk) + 'prediction']
execute(cmd, paths[chunk]['result_dir'] + 'out.runPrediction')
def run_prediction_parallel(paths_shared, paths, chunks):
proc_list = []
for chunk in chunks:
print('Runnning prediction on chunk', chunk, '...')
cmd = [paths_shared['augustus_bin'], '--species=human', '--treefile=' + paths_shared['tree_file'],
'--alnfile=' + paths[chunk]['maf_file'],
'--speciesfilenames=' + paths_shared['tbl_file'], '--softmasking=1', '--alternatives-from-evidence=0', '--dbaccess=' + paths_shared['sqlitedb_file'],
'--optCfgFile=../config/cgp/cgp_param_21features_accuracy_largerGrid.convDivCorrect.cfg',
'--stopCodonExcludedFromCDS=true', '--/CompPred/logreg=on', '--/CompPred/outdir=' + paths_shared['working_dir'] + 'out' + str(chunk) + 'prediction']
filename = paths[chunk]['result_dir'] + 'out.runPrediction'
with open(filename, 'w') as file:
proc_list.append(
subprocess.Popen(cmd,
stdout=file,
stderr=subprocess.PIPE,
universal_newlines=True))
for p in proc_list:
p.wait()
for p in proc_list:
error = p.stderr.read()
p.stderr.close()
def prepare_test(paths_shared, paths, chunks):
for chunk in chunks:
print('Preparing test for chunk', chunk, '...')
cmd = [paths_shared['augustus_bin'], '--species=human', '--treefile=' + paths_shared['tree_file'], '--alnfile=' + paths[chunk]['maf_file'], '--dbaccess=' + paths_shared['sqlitedb_file'],
'--speciesfilenames=' + paths_shared['tbl_file'], '--softmasking=1', '--alternatives-from-evidence=0',
'--optCfgFile=../config/cgp/cgp_param_21features_accuracy_largerGrid.convDivCorrect.cfg',
'--stopCodonExcludedFromCDS=true', '--/CompPred/logreg=on', '--/CompPred/outdir=' + paths_shared['working_dir'] + 'out' + str(chunk) + 'prepare', '--/Testing/testMode=prepare']
execute(cmd, paths[chunk]['result_dir'] + 'out.prepareTest')
make_sqlitedb(paths_shared, paths, chunk)
make_genometbl_chunk(paths, chunk)
def port_test(paths_shared, paths, chunks):
for chunk in chunks:
print('Porting test for chunk', chunk, '...')
# port_sqlitedb(paths_shared, paths, chunk)
make_genometbl_chunk(paths, chunk)
#make_genometbl(paths_shared)
def run_test(paths, chunk):
print('Runnning prediction on chunk', chunk, 'using the minimal data set...')
cmd = [paths_shared['augustus_bin'], '--species=human', '--treefile=' + paths_shared['tree_file'],
'--alnfile=' + paths[chunk]['maf_file'],
'--speciesfilenames=' + paths[chunk]['tbl_test_file'], '--softmasking=1', '--alternatives-from-evidence=0', '--dbaccess=' + paths[chunk]['sqlitedb_test_file'],
'--optCfgFile=../config/cgp/cgp_param_21features_accuracy_largerGrid.convDivCorrect.cfg',
'--stopCodonExcludedFromCDS=true', '--/CompPred/logreg=on', '--/CompPred/outdir=' + paths_shared['working_dir'] + 'out' + str(chunk) + 'run', '--/Testing/testMode=run',
'--/Testing/workingDir=' + paths_shared['working_dir'] + 'names']
execute(cmd, paths[chunk]['result_dir'] + 'out.runTest')
# parallel execution : acknowldgement Daniel Honsel (revisited code from test_case.py)
def run_test_parallel(paths_shared, paths, chunks):
proc_list = []
for chunk in chunks:
print('Runnning prediction on chunk', chunk, 'using the minimal data set...')
cmd = [paths_shared['augustus_bin'], '--species=human', '--treefile=' + paths_shared['tree_file'],
'--alnfile=' + paths[chunk]['maf_file'],
'--speciesfilenames=' + paths[chunk]['tbl_test_file'], '--softmasking=1', '--alternatives-from-evidence=0', '--dbaccess=' + paths[chunk]['sqlitedb_test_file'],
'--optCfgFile=../config/cgp/cgp_param_21features_accuracy_largerGrid.convDivCorrect.cfg',
'--stopCodonExcludedFromCDS=true', '--/CompPred/logreg=on', '--/CompPred/outdir=' + paths_shared['working_dir'] + 'out' + str(chunk) + 'run', '--/Testing/testMode=run',
'--/Testing/workingDir=' + paths_shared['working_dir']]
output = paths[chunk]['result_dir'] + 'out.runTest'
with open(output, 'w') as file:
proc_list.append(
subprocess.Popen(cmd,
stdout=file,
stderr=subprocess.PIPE,
universal_newlines=True))
for p in proc_list:
p.wait()
for p in proc_list:
error = p.stderr.read()
p.stderr.close()
def execute(cmd, output, mode='w'):
with open(output, mode) as file:
p = subprocess.Popen(cmd,
stdout=file,
stderr=subprocess.PIPE,
universal_newlines=True)
p.wait()
error = p.stderr.read()
p.stderr.close()
if error:
print(error)
# minimal test : prediction obtained working with minimal FASTAs is compared against original prediction, they should be identical for the test to succeed
def test_test(paths_shared, paths, chunks):
for chunk in chunks:
print('Runnning tests on chunk', chunk, '...')
if os.path.exists(paths_shared['working_dir'] + 'out' + str(chunk) + 'prediction'):
for species in ['hg38', 'rheMac3', 'mm10', 'rn6', 'oryCun2', 'bosTau8', 'canFam3', 'loxAfr3', 'echTel2', 'dasNov3', 'monDom5', 'galGal4']:
pathToGFF = paths_shared['working_dir'] + 'out' + str(chunk) + 'prediction/' + species + '.cgp.gff'
if os.path.exists(pathToGFF) == False:
goahead = False
print('Cannot find', pathToGFF, 'no test will be run over the code because original prediction is missing.')
return
else:
print('Cannot find', paths_shared['working_dir'] + 'out' + str(chunk) + 'prediction', 'no test will be run over the code because original prediction is missing.')
return
if os.path.exists(paths_shared['working_dir'] + 'out' + str(chunk) + 'run'):
for species in ['hg38', 'rheMac3', 'mm10', 'rn6', 'oryCun2', 'bosTau8', 'canFam3', 'loxAfr3', 'echTel2', 'dasNov3', 'monDom5', 'galGal4']:
pathToGFF = paths_shared['working_dir'] + 'out' + str(chunk) + 'run/' + species + '.cgp.gff'
if os.path.exists(pathToGFF) == False:
goahead = False
print('Cannot find', pathToGFF, 'no test will be run over the code because any new prediction over minimal data set is missing.')
return
else:
print('Cannot find', paths_shared['working_dir'] + 'out' + str(chunk) + 'run', 'no test will be run over the code because any new prediction over minimal data set is missing.')
return
print('Assessing correctness of code...')
correct = True
for species in ['hg38', 'rheMac3', 'mm10', 'rn6', 'oryCun2', 'bosTau8', 'canFam3', 'loxAfr3', 'echTel2', 'dasNov3', 'monDom5', 'galGal4']:
pathToGFF_1 = paths_shared['working_dir'] + 'out' + str(chunk) + 'prediction/' + species + '.cgp.gff'
pathToGFF_2 = paths_shared['working_dir'] + 'out' + str(chunk) + 'run/' + species + '.cgp.gff'
if filecmp.cmp(pathToGFF_1, pathToGFF_2) == False:
print('\tsomething went wrong: ', pathToGFF_1, 'differs from', pathToGFF_2)
correct = False
if correct:
print('\ttest on code succeeded')
# currently not used (returns accuracy for single chunks) - not parallelized
def run_evaluate(paths, chunk):
print('Runnning evaluation on chunk', chunk, '...')
cmd = [paths_shared['eval_bin'], paths_shared['anno_file'], paths_shared['working_dir'] + 'out' + str(chunk) + 'run/hg38.cgp.gff']
execute(cmd, paths[chunk]['result_dir'] + 'out.eval')
find_values(paths[chunk]['result_dir'] + 'out.eval')
# currently not used (returns accuracy for single chunks) - parallelized
def run_evaluate_parallel(paths, chunks):
proc_list = []
for chunk in chunks:
print('Runnning evaluation on chunk', chunk, '...')
cmd = [paths_shared['eval_bin'], paths_shared['anno_file'], paths_shared['working_dir'] + 'out' + str(chunk) + 'run/hg38.cgp.gff']
execute(cmd, paths[chunk]['result_dir'] + 'out.eval')
find_values(paths[chunk]['result_dir'] + 'out.eval')
filename = paths[chunk]['result_dir'] + 'out.eval'
with open(filename, 'w') as file:
proc_list.append(
subprocess.Popen(cmd,
stdout=file,
stderr=subprocess.PIPE,
universal_newlines=True))
for p in proc_list:
p.wait()
for p in proc_list:
error = p.stderr.read()
p.stderr.close()
# currently in use (returns accuracy after merging the contributes from all chunks) - parallelized
def run_evaluate_global(paths_shared, paths, chunks):
print('Runnning evaluation on chunks', chunks, '...')
with open(paths_shared['joingenes_out_dir'] + 'jgGFFs', 'w') as f:
for chunk in chunks:
print(paths_shared['working_dir'] + 'out' + str(chunk) + 'run/hg38.cgp.gff', '1', sep='\t', file=f)
cmd = [paths_shared['joingenes_bin'], '-f' + paths_shared['joingenes_out_dir'] + 'jgGFFs', '-o' + paths_shared['joingenes_out_dir'] + 'joingenes.gff']
execute(cmd, paths_shared['joingenes_out_dir'] + 'out.joingenes')
cmd = [paths_shared['eval_bin'], paths_shared['anno_file'], paths_shared['joingenes_out_dir'] + 'joingenes.gff']
execute(cmd, paths_shared['accuracy'] + 'out.eval')
find_values(paths_shared['accuracy'] + 'out.eval')
def find_values(file):
d = init_dict()
# Summary Stats
with open(file, 'r') as input:
input_str = input.read()
d['gene_sensitivity'] = value_from_summary_stats(input_str,
'Gene Sensitivity')
d['gene_specificity'] = value_from_summary_stats(input_str,
'Gene Specificity')
d['transcript_sensitivity'] = value_from_summary_stats(
input_str, 'Transcript Sensitivity')
d['transcript_specificity'] = value_from_summary_stats(
input_str, 'Transcript Specificity')
d['exon_sensitivity'] = value_from_summary_stats(input_str,
'Exon Sensitivity')
d['exon_specificity'] = value_from_summary_stats(input_str,
'Exon Specificity')
d['nucleotide_sensitivity'] = value_from_summary_stats(
input_str, 'Nucleotide Sensitivity')
d['nucleotide_specificity'] = value_from_summary_stats(
input_str, 'Nucleotide Specificity')
# general stats
with open(file, 'r') as input:
general = re.search('\*\*General Stats\*\*.*\*\*Detailed Stats\*\*',
input.read(), re.DOTALL).group()
b_gc = find_block(general, 'Gene', 'Transcript')
d['gene_count'] = find_value(b_gc, 'Count')
d['tx_count'] = find_value(b_gc, 'Total Transcripts')
d['txs_per_gene'] = find_value(b_gc, 'Transcripts Per')
b_tx = find_block(general, 'Transcript', 'Exon')
b_tx_all = find_block(b_tx, 'All', 'Complete')
d['avg_tx_length'] = find_value(b_tx_all, 'Average Length')
d['median_tx_length'] = find_value(b_tx_all, 'Median Length')
d['avg_coding_length'] = find_value(b_tx_all, 'Average Coding Length')
d['median_coding_length'] = find_value(b_tx_all, 'Median Coding Length')
d['avg_exons_per_tx'] = find_value(b_tx_all, 'Ave Exons Per')
b_single_ex = find_block(b_tx, 'Single Exon', 'Exon')
d['single_exon_count'] = find_value(b_single_ex, 'Count')
b_ex = find_block(general, 'Exon', 'Nuc')
b_ex_in = find_block(b_ex, 'Intron', 'InframeOptional')
d['avg_intron_length'] = find_value(b_single_ex, 'Average Length')
d['median_intron_length'] = find_value(b_single_ex, 'Median Length')
# compute f1 scores
d['gene_fscore'] = hmean(d['gene_sensitivity'], d['gene_specificity'])
d['transcript_fscore'] = hmean(d['transcript_sensitivity'],
d['transcript_specificity'])
d['exon_fscore'] = hmean(d['exon_sensitivity'], d['exon_specificity'])
d['nucleotide_fscore'] = hmean(d['nucleotide_sensitivity'],
d['nucleotide_specificity'])
# save results as JSON file
with open(paths_shared['accuracy'] + 'eval.json', 'w') as file:
json.dump(d, file, indent=4)
def hmean(v1, v2):
if v1 > 0 and v2 > 0:
return 2 * (v1 * v2 / (v1 + v2))
else:
return 0.0
def find_block(input, start, stop):
match = re.search(start + '[ ]*\n\t.*' + stop, input, re.DOTALL)
return match.group(0)
def find_value(input, name):
match = re.search(
'\t\t' + name + '[ ]*\t[0-9]+\.[0-9]+[ ]*\t[0-9]+\.[0-9]+', input)
return float(match.group(0).rsplit('\t', 1)[1])
def value_from_summary_stats(input, name):
match = re.search(name + '[ ]*\t[0-9]+\.[0-9]+', input).group(0)
return float(match.split('\t')[1])
def init_dict():
dictionary = {
'gene_sensitivity': 0.0,
'gene_specificity': 0.0,
'gene_fscore': 0.0,
'transcript_sensitivity': 0.0,
'transcript_specificity': 0.0,
'transcript_fscore': 0.0,
'exon_sensitivity': 0.0,
'exon_specificity': 0.0,
'exon_fscore': 0.0,
'nucleotide_sensitivity': 0.0,
'nucleotide_specificity': 0.0,
'nucleotide_fscore': 0.0,
'gene_count': 0.0,
'tx_count': 0.0,
'txs_per_gene': 0.0,
'avg_tx_length': 0.0,
'median_tx_length': 0.0,
'avg_coding_length': 0.0,
'median_coding_length': 0.0,
'avg_exons_per_tx': 0.0,
'single_exon_count': 0.0,
'avg_intron_length': 0.0,
'median_intron_length': 0.0
}
return dictionary
def execute(cmd, output, mode='w'):
with open(output, mode) as file:
p = subprocess.Popen(cmd,
stdout=file,
stderr=subprocess.PIPE,
universal_newlines=True)
p.wait()
error = p.stderr.read()
p.stderr.close()
if error:
print(error)
def init_paths_shared(augustusDir, workingDir, evalDir):
paths_shared = {
'eval_dir' : evalDir, #'/home/giovanna/Desktop/Alignment/eval-2.2.8/', # path to eval
'augustus_dir' : augustusDir, # '../', # path to augustus binaries
'working_dir' : workingDir, # '../examples/cgp12way/', # path to working directory (it contains tree, genome tbl, SQLite db and there results will be written)
'anno_file' : workingDir + 'ENSEMBL/ensembl.ensembl_and_ensembl_havana.chr1.CDS.gtf.dupClean.FILTERED.gtf', # path to annotation for hg38.chr1
# the following three directories are required only if a new test set is to be built
'maf_dir' : '../examples/cgp12way/MAF/', # path to MAFs
'fasta_dir' : '/home/giovanna/Desktop/Alignment/DATA_UCSCSOFT/', # path to original FASTA files for genomes of interest
'bedtools_dir' : '/home/giovanna/Desktop/Alignment/bedtoolsBinaries/' # path to bedtools (need to extract minimal FASTA from original FASTA, on the base of BED format)
}
paths_shared.update({'log' : paths_shared['working_dir'] + 'LOG/'}) # todo : move here all outXresult
paths_shared.update({'accuracy' : paths_shared['working_dir'] + 'ACCURACY/'}) # results returned by eval
# wrong paths_shared.update({'joingenes_bin' : paths_shared['augustus_dir'] + '/auxprogs/joingenes'}) # path to joingenes exec dir
paths_shared.update({'joingenes_out_dir' : paths_shared['working_dir'] + 'JOINGENES/'}) # output from joingenes
paths_shared.update({'sqlitedb_file' : paths_shared['working_dir'] + 'SQLITE/12way.db'}) # path to SQlite for full length genomes (only if a new data set is to be built)
paths_shared.update({'tbl_file' : paths_shared['working_dir'] + 'GENOMETBL/genomes.tbl'}) # path to genomes.tbl for length genomes (only if a new data set is to be built)
paths_shared.update({'tree_file' : paths_shared['working_dir'] + 'TREE/ucsc12way.nwk'}) # path to tree
paths_shared.update({'augustus_bin' : paths_shared['augustus_dir'] + 'bin/augustus'}) # path to augustus exec
paths_shared.update({'joingenes_bin' : paths_shared['augustus_dir'] + 'auxprogs/joingenes/joingenes'}) # path to joingenes exec
paths_shared.update({'bedtool_bin' : paths_shared['bedtools_dir'] + 'bedtools'}) # path to bedtools (only if a new data set is to be built)
paths_shared.update({'eval_bin' : paths_shared['eval_dir'] + 'evaluate_gtf.pl'}) # path to eval
return paths_shared
def init_paths(chunks):
paths = {}
for chunk in chunks:
dictionary = {}
# the following paths automatically reflect changes in paths_shared
dictionary.update({'sqlitedb_dir' : paths_shared['working_dir'] + 'minimalFasta' + str(chunk) + '/'}) # will contain minimal fasta after their extraction
dictionary.update({'sqlitedb_test_file' : paths_shared['working_dir'] + 'SQLITE/12wayTEST_' + str(chunk) + '.db'})
dictionary.update({'tbl_test_file' : paths_shared['working_dir'] + 'GENOMETBL/genomesTEST_' + str(chunk) + '.tbl'})
dictionary.update({'maf_file' : paths_shared['maf_dir'] + "chr1_chunk_" + str(chunk) + '.maf'})
dictionary.update({'result_dir' : paths_shared['working_dir'] + 'out' + str(chunk) + 'result/'})
paths[chunk] = dictionary
return paths
# given a list of chunks (no header admitted, tabseparated) and, for each of them, the number of genes it contains, a random subset is picked according to the following:
# no chunks in the data set overlap (rule out contiguous ones)
# the sum of genes in greater than 299
def randomize_dataset(filename):
random.seed(datetime.now())
data = np.genfromtxt(filename)
index = np.random.choice(range(0,len(data)), len(data), replace=False)
dataset = []
numgenes = 0
for i in index:
if data[i][1] > 0:
res = [x for x in dataset if abs(data[i][0] - x)<2]
if len(res) == 0:
dataset.append(int(data[i][0]))
numgenes = numgenes + data[i][1]
if numgenes>=300:
break
print('Sampled dataset contains', int(numgenes), 'genes from chunks:', [x for x in dataset])
def expandDir(path):
tmp = path
if len(path)>0 and path[len(path)-1] != '/':
tmp += '/'
return tmp
if __name__ == '__main__':
if args.rand:
randomize_dataset(args.rand)
sys.exit()
if args.chunks is None:
print('No chunks specified, please make use of --chunks to pass a non empty list of positive integers...')
sys.exit()
chunks = [int(x) for x in list(dict.fromkeys(args.chunks))]
chunks = [x for x in chunks if x>0 and x<126] # range valid for chr1 chunk size 2.5 Mb, chunk overlap 0.5 Mb
if len(chunks) == 0:
print('No valid chunks specified...')
sys.exit()
if args.augustusDir is None:
print('Path to comparative augustus executable required, please make use of --augustusDir to pass the path...')
sys.exit()
augustusDir = str(expandDir(args.augustusDir))
if args.workingDir is None:
print('Path to data set used in testing required, please make use of --workingDir to pass the path...')
sys.exit()
workingDir = str(expandDir(args.workingDir))
evalDir = ''
if args.eval:
if args.eval is None:
print('Path to Eval script required, please make use of --evalDir to pass the path...')
sys.exit()
evalDir = str(expandDir(args.evalDir))
paths_shared = init_paths_shared(augustusDir, workingDir, evalDir)
paths = init_paths(chunks)
make_dirs(paths_shared, paths, chunks)
if args.predict:
run_prediction_parallel(paths_shared, paths, chunks)
if args.prepare:
prepare_test(paths_shared, paths, chunks)
if args.run:
port_test(paths_shared, paths, chunks)
run_test_parallel(paths_shared, paths, chunks)
if args.eval:
run_evaluate_global(paths_shared, paths, chunks)
if args.test:
test_test(paths_shared, paths, chunks)
if args.port:
port_test(paths_shared, paths, chunks)
|