1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
#!/usr/bin/perl
#
# filter a psl file (from BLAT,GMAP)
#
# Mario Stanke, September 2009
#
use strict;
use Getopt::Long;
my $usage = "$0 -- filter a psl file (e.g. BLAT or GMAP)\n";
$usage .= "\n";
$usage .= "Usage: $0 <in.psl >out.f.psl\n";
$usage .= " PREREQUISITE: input psl file must be sorted by query name (standard with BLAT and GMAP)\n";
$usage .= " Do a sort -k 10,10 but be aware: LC_ALL may have to be set to C because sort ignores characters like \":\"\n";
$usage .= " if option 'paired' is used then it expects .f,.r or /1,/2 suffixes of mate pairs\n";
$usage .= " \n";
$usage .= " options:\n";
$usage .= " --pairbed=s file name of pairedness coverage:\n";
$usage .= " a .bed format file in which for each position the number of filtered\n";
$usage .= " read pairs is reported that contain the position in or between the reads\n";
$usage .= " --minId=n minimal percentage of identity (default 92)\n";
$usage .= " --minCover=n minimal percentage of coverage of the query read (default 80)\n";
$usage .= " --uniq take only best match and only, when second best is much worse (default false)\n";
$usage .= " --uniqthresh threshold % for uniq, second best must be at most this fraction of best (default .96)\n";
$usage .= " --best output all best matches that satisfy minId and minCover\n";
$usage .= " --commongenefile=s file name in which to write cases where one read maps to several different genes\n";
$usage .= " --nointrons do not allow longer gaps (for RNA-RNA alignments)\n";
$usage .= " --paired require that paired reads are on opposite strands of same target(default false)\n";
$usage .= " --maxintronlen=n maximal separation of paired reads (default 500000\n";
$usage .= " --verbose output debugging info (default false)\n";
my $maxintronlen = 500000;
my $minintronlen = 35;
my $maxSortesTest = 100000; # check sortedness only for this many of the first lines to save memory
my $minId = 92;
my $minCover = 80;
my $uniqthresh = 0.96; # a match is considered unique if the second best match has less than this percentage of the best
my $uniq = 0;
my $nointrons = 0;
my $best = 0;
my $commongenefile;
my $pairbedfile;
my $paired = 0;
my $verbose = 0;
my $help = 0;
my %qnamestems = (); # for checking sortedness.
my $cmdline = join(" ", @ARGV);
my $maxCountInsert = 1000000;
GetOptions(
'help!'=>\$help,
'maxintronlen:i'=>\$maxintronlen,
'minId:i'=>\$minId,
'minCover:i'=>\$minCover,
'uniqthresh:f'=>\$uniqthresh,
'paired!'=>\$paired,
'uniq!'=>\$uniq,
'nointrons!'=>\$nointrons,
'best!'=>\$best,
'commongenefile:s'=>\$commongenefile,
'pairbed:s'=>\$pairbedfile,
'verbose!'=>\$verbose);
if ($help) {
print "$usage";
exit(0);
}
my ($match,$TgapCount,$strand,$qname,$qstart,$qend,$qsize,$targetname,$tstart,$tend,$blockSizes,$qStarts,$tStarts,$qBaseInsert,$tBaseInsert);
my ($qnamestem,$qsuffix);
my $skiplines=0;
my ($line,$lastCompactifyLine)=(0,0);
my $oldqnamestem = "";
my (@f,@b,@t,@q,@insertlen);
my ($outMinId,$outMinCover,$outPaired,$outUniq,$outBest,$outIntrons) = (0,0,0,0,0,0); # number of reasons for filtering (nested, this order)
my @qali = (); # array of array references: lines for each query (pair)
my %paircovsteps = (); # for pairedness coverage
# keys: target names (chromosomes)
# values: array references
# elements: [pos,diff]
# position is 0-based, diff is +1 at start or -1 at end of mate pair
# XXXXXXXXXXXX---------------------XXXXXXXXX
# +1 -1
open (COMMON, ">$commongenefile") or die ("Could not open $commongenefile for writing.") if (defined($commongenefile));
while (<>) {
$skiplines=5 if (/psLayout/);
if ($skiplines>0) {
$skiplines--;
next;
}
$line++;
s/^#.*//;
next unless /\S/;
if ($line%100000==1){
$| = 1;
print STDERR "\r"."processed line $line";
}
if (defined($pairbedfile) && $line % 10000000 == 0 && $line >= $lastCompactifyLine * 1.5){
print STDERR "\ncompactifing coverage after $line lines ...";
compactifyBed();
$lastCompactifyLine = $line;
print STDERR "done\n";
}
@f = split /\t/, $_, 21;
if (@f < 20) { warn "Not PSL format"; next }
$match = $f[0];
$qBaseInsert = $f[5];
$TgapCount = $f[6];
$tBaseInsert = $f[7];
$strand = $f[8];
$qname = $f[9];
$qsize = $f[10];
$qstart = $f[11];
$qend = $f[12];
$targetname = $f[13];
$tstart = $f[15];
$tend = $f[16];
$blockSizes = $f[18];
$qStarts = $f[19];
$tStarts = $f[20];
$blockSizes =~ s/[, ]$//;
$tStarts =~ s/[, ]$//;
@b = split /,/, $blockSizes; #
@t = split /,/, $tStarts;
@q = split /,/, $qStarts;
$qnamestem = $qname;
if ($paired){
$qnamestem =~ s/[\.\/]([fr12])$//;
$qsuffix = $1; # f,1: forward mate, r,2: reverse mate "": no mates
}
if ($oldqnamestem ne $qnamestem && $oldqnamestem ne ""){
if ($line <= $maxSortesTest && $qnamestems{$qnamestem}){
print STDERR "Input file not sorted by query name! $qnamestem occurred previously. Set LC_ALL=C and sort -k 10,10\n";
exit 1;
}
processQuery() if (@qali);
}
# filter for minimum percentage of identity
my $tgap = 0; # inserted bases in target sequence, excluding introns
my $qgap = 0; # inserted bases in query sequence
my $gaps = 0; # total amount of gaps
for (my $i=0; $i<@b-1; $i++){
$tgap = $t[$i+1]-$t[$i]-$b[$i];
$qgap = $q[$i+1]-$q[$i]-$b[$i];
$tgap = 0 if ($qgap ==0 && $tgap >= $minintronlen && $tgap <= $maxintronlen); #target gap is intron
$gaps += ($tgap>$qgap)? $tgap : $qgap; # count the larger gap if both seqs happen to have a gap
}
my $percid = sprintf("%.1f", 100*$match/((($qend - $qstart + $gaps))));
if ($percid < $minId){
$outMinId++;
next;
}
# filter for minimum coverage
my $coverage = sprintf("%.1f", 100*($qend - $qstart)/$qsize);
if ($coverage < $minCover){
$outMinCover++;
next;
}
# filter for introns
if ($nointrons && $qBaseInsert + $tBaseInsert > 10){
$outIntrons++;
next;
}
push @qali, [$_, $targetname, $qsuffix, $strand, $tstart, $tend, $percid, $coverage];
# print "$targetname, $qsuffix, $strand, $tstart, $tend, $percid\n";
$oldqnamestem = $qnamestem;
$qnamestems{$qnamestem} = 1 if ($line <= $maxSortesTest);
}
processQuery() if ($qnamestem ne "");
close COMMON if (defined($commongenefile));
#
# write pairedness coverage info into the pairbedfile
#
if (defined($pairbedfile)){
open (PAIRBED, ">$pairbedfile") or die ("Could not open $pairbedfile for writing.");
print PAIRBED "track type=bedGraph name=\"pairedness coverage\" description=\"pairedness coverage\"";
print PAIRBED " visibility=full color=200,100,0 altColor=200,100,0\n";
compactifyBed();
foreach my $chr (sort keys %paircovsteps){
my $cov = 0;
my $pos = 0;
next if (!@{$paircovsteps{$chr}});
foreach my $step (@{$paircovsteps{$chr}}){
print PAIRBED "$chr\t$pos\t$step->[0]\t$cov\n" if ($pos<$step->[0] && $cov>0);
$pos = $step->[0];
$cov += $step->[1];
}
warn ("inconsistent") if ($cov!=0);
}
close PAIRBED;
}
@insertlen = sort {$a <=> $b} @insertlen;
#foreach(@insertlen){
# print STDOUT "Insert\t".$_."\n";
#}
print STDERR "\n filtered:\n";
print STDERR "----------------:\n";
print STDERR "percent identity: $outMinId\n";
print STDERR "coverage : $outMinCover\n";
print STDERR "nointrons : $outIntrons\n" if ($nointrons);
if ($paired) {
print STDERR "not paired : $outPaired\n" if ($paired);
print STDERR "quantiles of unspliced insert lengths: ";
for (my $i=1;$i<10;$i++){
print STDERR "q[" . (10*$i) . "%]=" . ($insertlen[int($i*@insertlen/10)]) . ", ";
}
print STDERR "\n";
}
print STDERR "uniq : $outUniq\n" if ($uniq);
print STDERR "best : $outBest\n" if ($best);
print STDERR "command line: $cmdline\n";
sub processQuery(){
# print "processing " . scalar(@qali) . " alignments\n";
# filter @qali based on mate pair consistency
# keep only alignments for which there is a possible mate:
# 1) same chromosome
# 2) different strand
# 3) distance in genome < minintronlen
if ($paired){
@qali = sort {$a->[1] cmp $b->[1] || $a->[4] cmp $b->[4]} @qali;
my @matepairs = ();
my %mated = ();
for (my $i=0;$i < @qali-1; $i++){
for (my $j=$i+1; $j < @qali && $qali[$i]->[1] eq $qali[$j]->[1]; $j++){ # only loop until leave chromosome
#print "comparing $i,$qali[$i]->[1], with $j,$qali[$j]->[1]\n";
if ($qali[$i]->[2] ne $qali[$j]->[2]){ # different mate: (f,r) or (1,2)
if ($qali[$i]->[3] ne $qali[$j]->[3]){ # different strand
my $dist = $qali[$j]->[4] - $qali[$i]->[5] - 1;
$dist = $qali[$i]->[4] - $qali[$j]->[5] - 1 if ($qali[$i]->[4] > $qali[$j]->[4]);
if ($dist < $maxintronlen && $dist>=0){ # not too far apart, not overlapping either
# print "found mate pair $i,$j\n";
push @matepairs, [$i,$j,scoreMate($i,$j,$dist)];
$mated{$i}=0 if (!defined($mated{$i}));
$mated{$j}=0 if (!defined($mated{$j}));
$mated{$i}++;
$mated{$j}++;
my $inslen = $qali[$j]->[5] - $qali[$i]->[4] - 1;
$inslen = $qali[$i]->[5] - $qali[$j]->[4] - 1 if ($inslen<0);
push @insertlen, $inslen if (@insertlen < $maxCountInsert); # if not limited, this may use on huge files an unwarranted amount of RAM for a simple statistics
} else {
#print "distance not right\n";
}
}
}
}
}
# print "found " . scalar(@matepairs) . " mate pairs, involving " . scalar(keys %mated) . " mates.\n" if ($verbose);
$outPaired += @qali - scalar(keys %mated);
if ((!$uniq && !$best) || @matepairs<2){# let pass all read alignments that are involved in mate pairs
foreach my $i (sort {$a <=> $b} keys %mated){
print $qali[$i]->[0];
}
} else {# uniq or best
@matepairs = sort {$b->[2] <=> $a->[2]} @matepairs;
if ($uniq){# let pass only best mate pair, and only if second is significantly worse
my $second = 1;
while ($second < @matepairs && similar($qali[$matepairs[0]->[0]], $qali[$matepairs[$second]->[0]], $qali[$matepairs[0]->[1]], $qali[$matepairs[$second]->[1]])){
$second++;
}
if ($second < @matepairs){
my $ratio = $matepairs[$second]->[2] / $matepairs[0]->[2];
if ($verbose) {
print "\nbest two mates\n";
print "" . join (", ", @{$qali[$matepairs[0]->[0]]}) . "\npaired with\n"
.join (" ", @{$qali[$matepairs[0]->[1]]})
. "\nscore=$matepairs[0]->[2]\n";
print "" . join (", ", @{$qali[$matepairs[1]->[0]]}) . "\npaired with\n"
.join (" ", @{$qali[$matepairs[1]->[1]]})
. "\nscore=$matepairs[1]->[2]\n";
print "ratio = $ratio\n";
}
if ($ratio < $uniqthresh){
# print the two alignments for best mate pair only
print $qali[$matepairs[0]->[0]]->[0];
print $qali[$matepairs[0]->[1]]->[0];
$outUniq += @qali-1;
} else {
@matepairs = ();
$outUniq += @qali;
}
} else {
print "suboptimal mate pairs are similar\n" if ($verbose);
print $qali[$matepairs[0]->[0]]->[0];
print $qali[$matepairs[0]->[1]]->[0];
}
splice @matepairs, 1; # keep only the best pair (if any)
} else { # best: take all best alignment pairs
my $optscore = $matepairs[0]->[2];
my @bestTnames = ();
my $numbest = 0;
my %haveOutput = (); # remember alignments that were printed, as some alignments can be part of several equally good pairs
while ($numbest < @matepairs && $matepairs[$numbest]->[2] == $optscore){
my ($aliline1, $aliline2) = ($qali[$matepairs[$numbest]->[0]]->[0], $qali[$matepairs[$numbest]->[1]]->[0]);
print $aliline1 if (!exists($haveOutput{$aliline1}));
$haveOutput{$aliline1} = 1;
print $qali[$matepairs[$numbest]->[1]]->[0] if (!exists($haveOutput{$aliline2}));
$haveOutput{$aliline2} = 1;
push @bestTnames, $qali[$matepairs[$numbest]->[0]]->[1];
$numbest++;
}
$outBest += @matepairs - $numbest;
splice @matepairs, $numbest; # keep only the first $numbest pairs
if (@bestTnames>1){
my %genenames = ();
foreach my $Tname (@bestTnames) { $Tname =~ s/\.t\d+//; $genenames{$Tname}=1; }
print COMMON $oldqnamestem . "\t" . join(" ", keys %genenames) . "\n" if (%genenames > 1 && defined($commongenefile));
}
}
}
# output pairedbed info: go through list of all mate pairs and store start and end position
if (defined($pairbedfile)){
while (@matepairs>0){
my $chr = $qali[$matepairs[0]->[0]]->[1];
$paircovsteps{$chr} = [] if (!defined($paircovsteps{$chr}));
my $pend = $qali[$matepairs[0]->[1]]->[5];
my $pstart = $qali[$matepairs[0]->[0]]->[4];
push @{$paircovsteps{$chr}}, [$pstart-1, 1];
push @{$paircovsteps{$chr}}, [$pend, -1];
shift @matepairs;
}
}
} else { # not paired, single read
if (($uniq || $best) && @qali>1){
my %rscores;
foreach my $ali (@qali){
$rscores{$ali} = scoreAli($ali); # store scores in hash so later sorting is faster
}
@qali = sort {-($rscores{$a} <=> $rscores{$b})} @qali;
if ($uniq) {
my $second = 1;
while ($second < @qali && similar($qali[0], $qali[$second])){
$second++;
}
if ($second < @qali){
# let pass only best mate pair, and only if second is significantly worse
my $ratio = $rscores{$qali[$second]}/$rscores{$qali[0]};
if ($verbose){
print "best two alignments\n";
print "" . $qali[0]->[0] ."\nscore=$rscores{$qali[0]}\n";
print "" . $qali[1]->[0] ."\nscore=$rscores{$qali[1]}\n";
print "ratio = $ratio\n";
}
if ($ratio < $uniqthresh){
print $qali[0]->[0];
$outUniq += @qali-1;
} else {
$outUniq += @qali; # drop all
}
} else {
print "suboptimal alignments are similar\n" if ($verbose);
print $qali[0]->[0];
$outUniq += @qali-1;
}
} else { # take all best alignments, that share the maximum score
my $optscore = $rscores{$qali[0]};
my @bestTnames = ();
while ($rscores{$qali[0]} == $optscore){
print $qali[0]->[0];
push @bestTnames, $qali[0]->[1];
shift @qali;
}
$outBest += @qali;
if (@bestTnames>1){
my %genenames = ();
foreach my $Tname (@bestTnames) { $Tname =~ s/\.t\d+//; $genenames{$Tname}=1; }
print COMMON $oldqnamestem . "\t" . join(" ", keys %genenames) . "\n" if (%genenames>1 && defined($commongenefile));
}
}
} else {
foreach my $ali (@qali){
print $ali->[0];
}
}
}
@qali = ();
}
# for comparing quality of two alignments
sub scoreAli{
my $ali = shift;
return $ali->[6]/100 # percent identity
+ $ali->[7]/100; # percent coverage
}
# for comparing quality of two mate pair read alignments (i1,j1), (i2,j2)
sub scoreMate{
my $i = shift;
my $j = shift;
my $dist = shift;
my $score = ($qali[$i]->[6] + $qali[$j]->[6])/100 # percent identity
+ ($qali[$i]->[7] + $qali[$j]->[7])/100; # percent coverage
$score -= $dist/$maxintronlen/10 if (!$best); # penalty for distance between mates. Do not use if option 'best' is chosen, otherwise a one base difference may cause a difference
return $score;
}
#
# checking whether two alignments (or two alignment pairs) are similar
# Purpose: Due to separate handling of spliced and unspliced alignments it can happen
# that very similar alignments are reported, e.g. an unspliced read going approximately up to an intron
# and a spliced read with a few base pairs on one exon.
# These should not be considered ambiguous when --uniq is specified.
sub similar {
return similar(@_[0],@_[1]) && similar(@_[2],@_[3]) if (@_ == 4);
my $r1 = shift;
my $s1 = shift;
if ($verbose){
print "\nchecking whether these alignments are approximately the same\n";
print "" . join (", ", @$r1) . "\nand\n" . join (", ", @$s1) . "\n\n";
}
return 0 if ($r1->[5] <= $s1->[4] || $r1->[4] >= $s1->[5]); # here: similar = overlapping target range
print "they are similar\n" if ($verbose);
return 1;
}
#
# compactifyBed
# if several steps coincide then summarize them equivalently by one step in order to
# 1) save memory or
# 2) output a bed file
#
sub compactifyBed {
my $before=0;
my $after=0;
foreach my $chr (sort keys %paircovsteps){
next if (!@{$paircovsteps{$chr}});
@{$paircovsteps{$chr}} = sort {$a->[0] <=> $b->[0]} @{$paircovsteps{$chr}};
$before += scalar(@{$paircovsteps{$chr}});
# print "before compactify\n";
# foreach my $step (@{$paircovsteps{$chr}}){
# print $step->[0] . "\t" . $step->[1] . "\n";
# }
my $i=0;
while ($i<@{$paircovsteps{$chr}}-1){
if ($paircovsteps{$chr}->[$i]->[0] eq $paircovsteps{$chr}->[$i+1]->[0]){
$paircovsteps{$chr}->[$i]->[1] += $paircovsteps{$chr}->[$i+1]->[1]; # add value from i+1 to i
splice @{$paircovsteps{$chr}}, $i+1, 1; # remove element i+1
} else {
$i++;
}
}
$after += scalar(@{$paircovsteps{$chr}});
}
print STDERR "\nbefore compactifying: $before after: $after\n";
}
|