1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
#!/usr/bin/perl
#
# Construct likely UTR regions from EST alignments and codon region boundaries
# e.g. to make a training set to train the AUGUSTUS UTR models.
#
# Mario Stanke, 1.4.2008
use strict;
use Getopt::Long;
my $usage = "$0 -- make a genbank or gff training file with 3' UTR and/or 5' UTR regions.\n\n";
$usage .= "EST alignments are used to guess the UTR and its end point.\n";
$usage .= "Usage: $0 codons.gff seq.fa ests.psl trainfile\n\n";
$usage .= "codons.gff is a file with (predicted) stop and/or start codons (containing stop_codon/start_codon lines\n";
$usage .= "seq.fa is the (multiple) fasta file with the assembly\n";
$usage .= "ests.psl is the (filtered) blat output of the ests against seq.fa\n";
$usage .= "train is the prefix-name of output files with the annotation for augustus training.\n";
$usage .= "two files will be created: train.gb (with genbank format) and train.gff (with gff format).\n";
$usage .= "options:\n";
$usage .= "--onlybest output for each stop/start codon only the 3'/5'-UTR from the most frequent splice variant\n";
$usage .= "--dist=n consider all alignments that start at most n bp downstream of stop codon/upstream of the start codon (default 0)\n";
my $dist = 0;
my $minintronlen = 40;
my $estContaminMargin = 30; # This much of the EST is allowed to mismatch at the 3' end (3'UTR) or 5'end (5'UTR)
# Apart from this allowed margin, the EST must align up to its end.
my $radius = 20; # Radius for smoothing/consensus building at the transcription end
my $thresh = 2*$radius+3; # More than two exactly matching EST ends needed
my $gff = 0;
my $onlybest = 0;
my @f;
my @psl;
my %seqs =();
my %ali; # keys: genomic seqnames, value: (values: arrays: index is block, values: arrays of psl lines)
my $blocksize = 500000; # for indexing which bucket/block an alignment belongs to
my @hits;
my $kind; # stop or start meaning 3'UTR or 5'UTR
my ($codon, $strand, $name, $seq, $gname, $trname, $median);
my %c; # hash: Keys: genomic sequence names, values: rerefence to (sorted) array of start and stop positions
GetOptions('gff!'=>\$gff,
'onlybest!'=>\$onlybest,
'dist=i'=>\$dist);
if ($#ARGV != 3) {
die "Unknown option\n\n$usage";
}
my $codonfname = $ARGV[0];
my $seqfname = $ARGV[1];
my $pslfname = $ARGV[2];
my $trainfname = $ARGV[3];
open(CODONS, "<$codonfname") or die ("Could not open $codonfname");
open(PSL, "<$pslfname") or die ("Could not open $pslfname");
open(SEQ, "<$seqfname") or die ("Could not open $seqfname");
@psl = <PSL>;
close PSL;
# store the EST alignments in a hash indexed by the sequence name
foreach my $line (@psl) {
my @f = split /\t/, $line;
$ali{$f[13]} = [] unless exists $ali{$f[13]};
my $blockstart = int($f[15]/$blocksize);
my $blockend = int($f[16]/$blocksize);
for (my $block = $blockstart; $block <= $blockend; $block++){ # usually just a single block
$ali{$f[13]}->[$block] = [] if (!defined($ali{$f[13]}->[$block]));
push @{$ali{$f[13]}->[$block]}, $line;
}
}
# read in all sequences and store them in hash
$/="\n>";
while(<SEQ>){
/>?(.*)\n/;
$name = $1;
$seq = $'; #'
$name =~ s/\s+.*//;
$seq =~ s/>//;
$seq =~ s/\n//g;
if (exists $seqs{$name}) {
warn "duplicate sequence name: $name\n";
}
$seqs{$name} = $seq;
}
close SEQ;
$/="\n";
open(GB, ">$trainfname.gb") or die ("Could not write $trainfname.gb.");
open(GFF, ">$trainfname.gff") or die ("Could not write $trainfname.gff.");
PrepareCodonIdx();
my $nOfoverlap = 0; # number of filtered hints by overlapsGene
my $nOfhints = 0; # number of compatible hints if one wouldn't use the overlapsGene
while(<CODONS>) {
my %splicevar;
@f = split /\t/, $_, 9;
if (@f < 8) { next }
if ($f[2] eq 'stop_codon') {
$kind = "stop";
} elsif ($f[2] eq 'start_codon') {
$kind = "start";
} else {
next;
}
$name = $f[0];
$codon = $f[4];
$f[8] =~ /gene_id."(.*)"/;
$gname = $1;
$f[8] =~ /transcript_id."([^"]*)"/; # "
$trname = $1;
$strand = $f[6];
if (($strand eq '-' && $kind eq 'stop') || ($strand eq '+' && $kind eq 'start')) {
$codon -=2;
}
#print "$kind codon $codon $strand\n";
# search the est alignments for ones that constitute UTRs like this:
#
# stop codon >
#
# ----------- ----
# ----------- -----
# ----------- ---
#test
#print "codon: $codon\n"
#print "strand: $strand\n";
#test
if (defined $ali{$name}) { # sequence has EST alignments at all
undef $seq;
my $block = int($codon/$blocksize);
if (defined($ali{$name}->[$block])){
@hits = @{$ali{$name}->[$block]};
} else {
@hits = ();
}
foreach my $line (@hits) {
@f = split /\t/, $line;
my $aliStrand = $f[8];
my $queryLength = $f[10];
my $queryBegin = $f[11];
my $queryEnd = $f[12];
my $targetBegin = $f[15];
my $targetEnd = $f[16];
my $isEstEnd = 0;
if (((($kind eq 'stop' && $strand eq $aliStrand) || ($kind eq 'start' && $strand ne $aliStrand)) && $queryEnd >= $queryLength - $estContaminMargin) ||
((($kind eq 'stop' && $strand ne $aliStrand) || ($kind eq 'start' && $strand eq $aliStrand)) && $queryBegin <= $estContaminMargin)){
$isEstEnd = 1;
}
if ($isEstEnd && # the EST/cDNA aligns almost up to its end
((($kind eq 'stop' && $strand eq '+') || ($kind eq 'start' && $strand eq '-')) && $targetBegin <= $codon + $dist && $targetEnd >= $codon) ||
((($kind eq 'stop' && $strand eq '-') || ($kind eq 'start' && $strand eq '+')) && $targetBegin <= $codon && $targetEnd >= $codon - $dist)) { # alignment overlaps start/stop codon or is not too far away from it
if (!defined $seq) {
die ("Sequence $name not in sequence file.") unless (defined $seqs{$name});
$seq = $seqs{$name};
}
# close small gaps and create list of segments @segs
my @segs;
my @blocklengths = split /,/, $f[18];
chomp $f[20];
my @targetbegins = split /,/, $f[20];
# fill the gap to the stop/start codon in case the alignment is (at most $dist) downstream of stop codon
if ((($kind eq 'stop' && $strand eq '+') || ($kind eq 'start' && $strand eq '-')) && $targetbegins[0] > $codon) {
@blocklengths = ($targetbegins[0]-$codon+1, @blocklengths);
@targetbegins = ($codon - 1, @targetbegins);
} elsif ((($kind eq 'stop' && $strand eq '-') || ($kind eq 'start' && $strand eq '+')) && $targetbegins[-1] < $codon) {
push @blocklengths , ($codon - $targetbegins[-1]+1);
push @targetbegins , $targetbegins[-1]+1;
}
push @segs, $targetbegins[0]+1;
for (my $i=0; $i < @blocklengths-1; $i++) {
if ($targetbegins[$i] + $blocklengths[$i] + $minintronlen < $targetbegins[$i+1]){
push @segs, $targetbegins[$i] + $blocklengths[$i];
push @segs, $targetbegins[$i+1]+1;
}
}
push @segs, $targetbegins[@targetbegins-1] + $blocklengths[@blocklengths-1];
#print "segs= ", (join " ", @segs);
#print "\n";
# check whether the codon position is contained in a block at all
my $ok = 0;
for (my $i=0; $i < @segs && !$ok; $i += 2) {
if ($segs[$i] <= $codon && $segs[$i+1] >= $codon) {
$ok = 1;
}
}
#print "alignment covers $kind codon: $ok\n";
# check whether each remaining gap could be an intron
if (@segs >1 && $ok) {
for (my $i=1; $i < @segs-1 && $ok; $i += 2) {
my $intronbegin = $segs[$i]+1;
my $intronend = $segs[$i+1]-1;
#print "ibegin=$intronbegin, $splicevariantiend=$intronend\t";
#print substr($seq, $intronbegin-1, 2) . " " . substr($seq, $intronend-2, 2) . "\n";
if (($strand eq '+' && (uc((substr($seq, $intronbegin-1, 2)) ne 'GT' && uc(substr($seq, $intronbegin-1, 2)) ne 'GC') ||
(uc(substr($seq, $intronend-2, 2)) ne 'AG'))) ||
($strand eq '-' && (uc((substr($seq, $intronend-2, 2)) ne 'AC' && uc(substr($seq, $intronend-2, 2)) ne 'GC') ||
(uc(substr($seq, $intronbegin-1, 2)) ne 'CT')))) {
$ok = 0;
#print "intron not ok\n";
}
}
}
my ($a,$b); # fill in a and b, Z.B. a=alignment start, b= Start codon-3
if (($strand eq "+" && $kind eq "start") || ($strand eq "-" && $kind eq "stop")) {
$a = $targetBegin; #anfang des alignments
$b = $codon - 3;
} else {
$a = $codon +3;
$b = $targetEnd; # ende des alignments
}
my $geneOverlap=overlapsGene($name, $a, $b);
if ($ok && !$geneOverlap) { #falls alle Gaps Intron sind...
$nOfhints++;
if (($kind eq 'stop' && $strand eq '+') || ($kind eq 'start' && $strand eq '-')) {
while (@segs >= 4 && $segs[1] < $codon) {
shift @segs; #entfernt das erste Element von @segs
shift @segs;
}
} else {
while (@segs >= 4 && $segs[-2] > $codon) {
pop @segs; #entfernt das letzte Element von @segs
pop @segs;
}
}
# build equivalence classes of alignments, the very start and very end do not matter
# make a hash with the string consisting of all coordinates but the first and the last as key
my @copy = @segs;
shift @copy;
pop @copy;
my $key = join " ", @copy; #join the array elements by " "
#print "key=$key\n";
$splicevar{$key} = [] unless exists $splicevar{$key};
push @{$splicevar{$key}}, \@segs;
}
else {
if ($ok && $geneOverlap) {
$nOfoverlap++;
$nOfhints++;
}
}
}
}
# now go through the equivalence classes of alignments and determine for each one the tts/tss as a cluster point
my @ends;
my @segs;
my $numpeak;
my $num;
my $numalis;
my $maxalis=0;
foreach my $splicevariant (keys %splicevar) {
if (scalar(@{$splicevar{$splicevariant}}) > $maxalis) {
$maxalis = scalar(@{$splicevar{$splicevariant}});
}
}
my $haveOne=0;
foreach my $splicevariant (keys %splicevar) {
$numalis = scalar(@{$splicevar{$splicevariant}});
next if ($onlybest && ($numalis < $maxalis || $haveOne));
#print "splice variant (" . $numalis . " alignments): $splicevariant\n";
@ends = ();
foreach my $segref (@{$splicevar{$splicevariant}}){
@segs = @$segref;
if (($kind eq 'stop' && $strand eq '+') || ($kind eq 'start' && $strand eq '-')) {
push @ends, $segs[@segs-1];
} else {
push @ends, $segs[0];
}
}
sort {$a <=> $b } @ends;
# compute the likely transcription termination site (tts) or transcripton start site (tss)
# take that end point that has the most other end points within a range of [-$radius,$radius] (weighting: 1 2 3 4 5 ... $radius+1 ... 5 4 3 2 1)
$numpeak = 0;
$median = -1;
foreach my $p (@ends){
$num = 0;
foreach my $q (@ends){
if(abs($q-$p) <= $radius) {
$num += $radius+1-abs($q-$p);
}
}
if ($num > $numpeak) {
$numpeak = $num;
$median = $p;
}
}
#print "ends: " . join(" ", @ends) . " median=$median\n";
if ($numpeak >= $thresh){
printGFF($codon, $splicevariant, $median, $strand, $numpeak);
printGB($codon, $splicevariant, $median, $strand);
}
$haveOne=1;
}
}
}
print "$nOfoverlap hints were filtered because of gene overlap.\n";
print "$nOfhints hints would be compatible if the hints with gene-overlap wouldn't be filtered.\n";
close GB;
close GFF;
sub printGFF {
my $codon = shift;
my $splicevariant = shift;
my $tend = shift;
my $strand = shift;
my $score = shift;
my @exons;
if (($kind eq 'stop' && $strand eq '+') || ($kind eq 'start' && $strand eq '-')) {
@exons = ($codon+1, split (/ /, $splicevariant), $tend);
} else {
@exons = ($tend, split (/ /, $splicevariant), $codon-1);
}
for (my $i=0; $i<@exons; $i+=2) {
print GFF "$name\tmakeUtr\t" . ($kind eq 'stop'? "3'-UTR" : "5'-UTR") . "\t$exons[$i]\t$exons[$i+1]\t$score\t$strand\t.\ttranscript_id \"$trname\"; gene_id \"$gname\";\n";
}
}
sub printGB {
my $codon = shift;
my $splicevariant = shift;
my $tend = shift;
my $strand = shift;
my $length;
my $locusname;
my $beginpos;
my $sequence;
my ($a,$c,$g,$t,$n,$rest,$pos,$i,$j,$ten,$zahlzeile);
my @join = split / /, $splicevariant;
if (($kind eq 'stop' && $strand eq '+') || ($kind eq 'start' && $strand eq '-')) {
die ("negative length") unless $tend >= $codon;
return unless ($codon >= 100 && $tend + 400 < length $seq);
$beginpos = $codon-99;
$sequence = substr($seq, $beginpos, $tend - $codon + 100 + 400);
@join = ($codon, @join, $tend);
} else {
die ("negative length") unless $codon >= $tend;
return unless ($tend >= 401 && $codon + 100 < length $seq);
$beginpos = $tend-1-400;
$sequence = substr($seq, $beginpos, $codon - $tend + 100 + 400);
@join = ($tend, @join, $codon);
}
foreach my $p (@join){
$p -= $beginpos;
}
$length = length $sequence;
$locusname = $name . "_" . $gname;
if ($splicevariant ne "") {
my $variant = $splicevariant;
$variant =~ s/ /_/g;
$locusname .= ":" . $variant;
}
# print "codon=$codon\n";
# print "splicevariant=$splicevariant\n";
# print "tend=$tend\n";
# print "strand=$strand\n";
print GB "LOCUS $locusname $length bp DNA\n";
print GB "FEATURES Location/Qualifiers\n";
print GB " source 1..$length\n";
print GB " mRNA ";
my $joinstr;
# create mRNA join string
if ($strand eq '-') {
$joinstr .= "complement(";
}
if (@join > 2) {
$joinstr .= "join(";
}
for ($i=0; $i<@join-1; $i+=2) {
if ($strand eq '+' && $i==0) {
$joinstr .= "" . $join[$i] . ".." . $join[$i+1];
} elsif ($strand eq '-' && $i == @join-2){
$joinstr .= $join[$i] . ".." . $join[$i+1];
} else {
$joinstr .= $join[$i] . ".." . $join[$i+1];
}
if ($i<@join-2) {
$joinstr .= ",";
}
}
if (@join > 2) {
$joinstr .= ")";
}
if ($strand eq '-') {
$joinstr .= ")";
}
while (length $joinstr > 0) {
print GB substr $joinstr,0,59;
$joinstr = substr $joinstr, 59;
if (length $joinstr > 0) {
print GB "\n ";
}
}
print GB "\n";
# create CDS join string
if ($strand eq '+') {
$joinstr = "" . ($codon-$beginpos) . ".." . ($codon-$beginpos);
} else {
$joinstr = "complement(" . ($codon-$beginpos) . ".." . ($codon-$beginpos) . ")";
}
print GB " CDS " . $joinstr . "\n";
# print sequence
$sequence =~ s/A/a/g;
$sequence =~ s/C/c/g;
$sequence =~ s/G/g/g;
$sequence =~ s/T/t/g;
$sequence =~ s/N/n/g;
$a = $sequence =~ s/a/a/g;
$c = $sequence =~ s/c/c/g;
$g = $sequence =~ s/g/g/g;
$t = $sequence =~ s/t/t/g;
$n = $sequence =~ s/n/n/g;
$rest = $length - $a - $c - $g - $t -$n;
print GB "BASE COUNT $a a $c c $g g $t t";
if ($n>0) {
print GB " $n n";
}
if ($rest > 0) {
print GB " $rest ?";
}
print GB "\nORIGIN\n";
$i = 1;
$pos = 0;
while ($pos <= length $sequence) {
$zahlzeile = "";
for ($j=0; $j < 9-length "$i"; $j=$j+1) {
print GB " ";
}
print GB "$i";
for ($j=0; $j < 6; $j=$j+1) {
$ten = substr $sequence, $pos, 10;
if (length $ten > 0) {
print GB " $ten";
}
$pos = $pos + 10;
}
print GB "\n";
$i += 60;
}
print GB "//\n";
}
# prepare an index of where codons lie in the genome for fast access later
sub PrepareCodonIdx{
open(CODONS_PRE, "<$codonfname") or die ("Could not open $codonfname");
while(<CODONS_PRE>) {
@f = split /\t/, $_, 9;
if (@f < 8) { next }
if ($f[2] eq 'stop_codon') {$kind = "stop";} elsif ($f[2] eq 'start_codon') {$kind = "start";} else {next;}
$name = $f[0];
$codon = $f[4];
$strand = $f[6];
if (($strand eq '-' && $kind eq 'stop') || ($strand eq '+' && $kind eq 'start')) {
$codon -=2; #nv
}
# add $codon to array
$c{$name} = [] unless (exists($c{$name}));
push @{$c{$name}}, $codon;
};
# now sort all lists of codons
foreach my $seq (keys %c){
@{$c{$seq}}=sort{$a <=> $b}@{$c{$seq}} #sort numerically
}
close CODONS_PRE;
}
sub overlapsGene{
# binary sort in $c{seq}
my $seq = shift;
my $a = shift;
my $b = shift;
my ($l, $u) = (0, $#{$c{$seq}} ); ## lower, upper end of search interval
my $i;
while ($l<=$u){
$i = int(($l + $u)/2);
if ($c{$seq}->[$i]<$a){$l=$i+1;}
elsif ($c{$seq}->[$i]>$b){$u=$i-1;}
else {return $c{$seq}->[$i]} #the position number for overlap
}
return 0; #not found
}
|