1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
!----------------------------------------------------------------------
!----------------------------------------------------------------------
! brc : A parabolic PDE (the Brusselator)
!----------------------------------------------------------------------
!----------------------------------------------------------------------
! (Discretized in space by polynomial collocation at Chebyshev points)
!----------------------------------------------------------------------
!----------------------------------------------------------------------
! NOTE: The value of the constant NE is defined in the module brc below.
!
! NE : the dimension of the PDE system
!
! NN : the number of Chebyshev collocation points in space is
! determined by the AUTO-constant NDIM:
! NN = NDIM/NE
!----------------------------------------------------------------------
!----------------------------------------------------------------------
MODULE brc
SAVE
INTEGER, PARAMETER :: NE=2
DOUBLE PRECISION, ALLOCATABLE :: D2(:,:)
END MODULE brc
SUBROUTINE FF(NE,U,PAR,F)
! ---------- --
! Define the nonlinear term
IMPLICIT NONE
INTEGER, INTENT(IN) :: NE
DOUBLE PRECISION, INTENT(IN) :: U(NE),PAR(*)
DOUBLE PRECISION, INTENT(OUT) :: F(NE)
DOUBLE PRECISION X,Y,A,B
X=U(1)
Y=U(2)
A=PAR(1)
B=PAR(2)
F(1)= X**2*Y - (B+1)*X + A
F(2)=-X**2*Y + B*X
END SUBROUTINE FF
SUBROUTINE SETDC(NE,DC,PAR)
! ---------- -----
! Set the diffusion constants (constant, or in terms of PAR)
IMPLICIT NONE
INTEGER, INTENT(IN) :: NE
DOUBLE PRECISION, INTENT(OUT) :: DC(NE)
DOUBLE PRECISION, INTENT(IN) :: PAR(*)
DC(1)=PAR(3)/PAR(5)**2
DC(2)=PAR(4)/PAR(5)**2
END SUBROUTINE SETDC
SUBROUTINE SETBC(NE,PAR,U0,U1)
! ---------- -----
! Set the boundary values (to be kept fixed in time)
IMPLICIT NONE
INTEGER, INTENT(IN) :: NE
DOUBLE PRECISION, INTENT(IN) :: PAR(*)
DOUBLE PRECISION, INTENT(OUT) :: U0(NE),U1(NE)
DOUBLE PRECISION A,B
A=PAR(1)
B=PAR(2)
U0(1)=A
U0(2)=B/A
U1(1)=A
U1(2)=B/A
END SUBROUTINE SETBC
SUBROUTINE STPNT(NDIM,U,PAR,T)
! ---------- -----
! Define the starting stationary solution on the spatial mesh
USE brc
IMPLICIT NONE
INTEGER, INTENT(IN) :: NDIM
DOUBLE PRECISION, INTENT(INOUT) :: U(NDIM/NE,NE),PAR(*)
DOUBLE PRECISION, INTENT(IN) :: T
INTEGER I,NN
DOUBLE PRECISION A,B,Dx,Dy,RL
! Set the parameter values
A=2.d0
B=5.45d0
Dx=0.008d0
Dy=0.004d0
RL=0.4
PAR(1)=A
PAR(2)=B
PAR(3)=Dx
PAR(4)=Dy
PAR(5)=RL
! Set the starting solution at the Chebyshev collocation points
NN=NDIM/NE
DO I=1,NN
U(I,1)=A
U(I,2)=B/A
ENDDO
END SUBROUTINE STPNT
!----------------------------------------------------------------------
!----------------------------------------------------------------------
! Problem-independent subroutines
!----------------------------------------------------------------------
!----------------------------------------------------------------------
SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)
! ---------- ----
USE brc
IMPLICIT NONE
INTEGER, INTENT(IN) :: NDIM, ICP(*), IJAC
DOUBLE PRECISION, INTENT(IN) :: U(NDIM/NE,NE), PAR(*)
DOUBLE PRECISION, INTENT(OUT) :: F(NDIM/NE,NE)
DOUBLE PRECISION, INTENT(INOUT) :: DFDU(NDIM,NDIM), DFDP(NDIM,*)
DOUBLE PRECISION W(NE),FW(NE),DC(NE),U0(NE),U1(NE)
INTEGER I,J,K,NN,NP
! Problem-independent initialization :
NN=NDIM/NE
NP=NN+1
CALL SETDC(NE,DC,PAR)
CALL SETBC(NE,PAR,U0,U1)
DO I=1,NN
DO K=1,NE
W(K)=U(I,K)
ENDDO
CALL FF(NE,W,PAR,FW)
DO J=1,NE
F(I,J)=FW(J) + DC(J)*(U0(J)*D2(I,0)+U1(J)*D2(I,NP))
DO K=1,NN
F(I,J)=F(I,J)+DC(J)*D2(I,K)*U(K,J)
ENDDO
ENDDO
ENDDO
END SUBROUTINE FUNC
SUBROUTINE GENCF(PAR,NN)
! ---------- -----
USE brc
IMPLICIT NONE
INTEGER, INTENT(IN) :: NN
DOUBLE PRECISION, INTENT(IN) :: PAR(*)
DOUBLE PRECISION, ALLOCATABLE :: X(:),XX(:,:),CC(:,:),RI(:,:)
INTEGER, ALLOCATABLE :: IR(:),IC(:)
DOUBLE PRECISION pi,C,DET
INTEGER I,J,K,M,NP
NP=NN+1
M=NN+2
ALLOCATE(D2(NN,0:NP))
ALLOCATE(X(M),XX(M,M),CC(M,0:NP),RI(M,M),IR(M),IC(M))
pi=4*ATAN(1.d0)
X(1)=0.d0
DO K=2,NP
C=COS( (2*K-3)*pi/(2*NN) )
X(K)=(1+C)/2
ENDDO
X(M)=1.d0
DO I=1,M
DO J=1,M
RI(I,J)=0.d0
XX(I,J)=X(I)**(J-1)
ENDDO
RI(I,I)=1.d0
ENDDO
CALL GE(0,M,M,XX,M,M,CC,M,RI,IR,IC,DET)
DO I=1,NN
DO J=0,NP
D2(I,J)=0.d0
DO K=2,M-1
D2(I,J)=D2(I,J)+CC(K+1,J)*K*(K-1)*X(I+1)**(K-2)
ENDDO
ENDDO
ENDDO
DEALLOCATE(X,XX,CC,RI,IR,IC)
END SUBROUTINE GENCF
SUBROUTINE BCND
END SUBROUTINE BCND
SUBROUTINE ICND
END SUBROUTINE ICND
SUBROUTINE FOPT
END SUBROUTINE FOPT
!----------------------------------------------------------------------
!----------------------------------------------------------------------
SUBROUTINE PVLS(NDIM,U,PAR)
! ---------- ----
USE brc
IMPLICIT NONE
INTEGER, INTENT(IN) :: NDIM
DOUBLE PRECISION, INTENT(IN) :: U(NDIM)
DOUBLE PRECISION, INTENT(INOUT) :: PAR(*)
LOGICAL, SAVE :: ifrst = .TRUE.
! Problem-independent initialization :
IF(ifrst)THEN
CALL GENCF(PAR,NDIM/NE)
ifrst=.FALSE.
ENDIF
END SUBROUTINE PVLS
|