File: c2c.f90

package info (click to toggle)
auto-07p 0.9.1%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 16,200 kB
  • sloc: fortran: 22,644; f90: 19,340; python: 19,045; ansic: 11,116; sh: 1,079; makefile: 618; perl: 339
file content (277 lines) | stat: -rw-r--r-- 7,085 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
!----------------------------------------------------------------------
!     Redoing the local bifurcation of the model analysed by
!     Martin Boer, ch. 4 of thesis.
!     Cycle-to-cycle connection 3D food chain
!
!     Homoclinic, but set up also for heteroclinic
!
!     U(1-3) = limit cycle
!     U(4-6) = eigenfunction (ef) stable
!     U(7-9) = limit cycle again ("second cycle")
!     U(10-12) = ef unstable
!     U(13-15) = connecting orbit
!
!     George van Voorn, June 20th 2007
!     Bart Oldeman, December 2008
!---------------------------------------------------------------------- 

  SUBROUTINE RHS(N,U,PAR,F,DFDU,IJAC)
! ---------- --- 

    IMPLICIT NONE
    INTEGER N
    DOUBLE PRECISION U(N),PAR(*),F(N),DFDU(N,N)
    LOGICAL IJAC
    DOUBLE PRECISION f1,f2
    DOUBLE PRECISION d1,d2,x,y,z,a1,a2,b1,b2
!     Declaring variables
    x=U(1)
    y=U(2)
    z=U(3)
!     Parameter values
    d1=PAR(1)
    d2=PAR(2)

    a1 = 5.d0
    a2 = 0.1d0
    b1 = 3.d0
    b2 = 2.d0

    f1=a1/(1d0 + b1*x)
    f2=a2/(1d0 + b2*y)
!     Formulas
    F(1)= x*(1d0 - x) - f1*x*y
    F(2)= f1*x*y - d1*y - f2*y*z
    F(3)= f2*y*z - d2*z

    IF(.NOT.IJAC)RETURN

!     Jacobian elements
    DFDU(1,1)=1d0-2*x-f1*y+b1*x*y*(f1**2)/a1
    DFDU(1,2)=-f1*x
    DFDU(1,3)=0.0d0
    DFDU(2,1)=f1*y-b1*x*y*(f1**2)/a1
    DFDU(2,2)=f1*x-d1-f2*z+b2*y*z*(f2**2)/a2
    DFDU(2,3)=-f2*y
    DFDU(3,1)=0.0d0
    DFDU(3,2)=f2*z-b2*y*z*(f2**2)/a2
    DFDU(3,3)=f2*y-d2

  END SUBROUTINE RHS

  SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP) 
! ---------- --- 

    IMPLICIT NONE
    INTEGER NDIM,ICP(*),IJAC
    DOUBLE PRECISION U(NDIM),PAR(*),F(NDIM),DFDU(NDIM,*),DFDP(NDIM,*)
    DOUBLE PRECISION A(3,3)

    CALL RHS(3,U,PAR,F,A,NDIM/=3)
    IF(NDIM==3)RETURN

    F(1:3) = PAR(11)*F(1:3)

    IF(NDIM==6)THEN
!     Variational equations
!     PAR(11) = cycle period
!     PAR(12) = log(FM) 
       F(4:6) = PAR(11)*MATMUL(A(:,:),U(4:6))-PAR(12)*U(4:6)
       RETURN
    ENDIF

!     Adjoint variational equations
!     PAR(11) = cycle period
!     PAR(4) = log(FM) 
    F(4:6) = -PAR(11)*MATMUL(TRANSPOSE(A(:,:)),U(4:6))-PAR(4)*U(4:6)

!     Functions limit cycle doubled U(7-9)
!     We pretend this is a second different cycle
    CALL RHS(3,U(7:9),PAR,F(7:9),A,.TRUE.)
    F(7:9) = PAR(6)*F(7:9)
!     Period=PAR(6), obviously equal to PAR(11), U(10-12)
!     PAR(5) = log(FM) 
    F(10:12) = -PAR(6)*MATMUL(TRANSPOSE(A(:,:)),U(10:12))-PAR(5)*U(10:12)

    IF(NDIM==12)RETURN

!     Connection rescaled, PAR(7) = Tc
    CALL RHS(3,U(13:15),PAR,F(13:15),A,.FALSE.)
    F(13:15) = PAR(7)*F(13:15)

  END SUBROUTINE FUNC

  SUBROUTINE STPNT(NDIM,U,PAR) 
! ---------- --- 

    IMPLICIT NONE
    INTEGER NDIM
    DOUBLE PRECISION, INTENT(INOUT) :: U(NDIM), PAR(*)

    DOUBLE PRECISION FLOQ,epsilon

    IF(NDIM==12)THEN
       ! extending from NDIM=6 to NDIM=12
       U(7:12)=U(1:6)
       RETURN
    ELSEIF(NDIM==15)THEN
       ! extending from NDIM=12 to NDIM=15
       epsilon=PAR(13)
       U(13:15)=PAR(14:16) + epsilon*PAR(17:19)
       RETURN
    ENDIF

!     0.16<par1=d1<0.32,0.0075<par2=d2<0.015

    PAR(1)=0.5d0
    PAR(2)=0.0125d0
    U(1)=0.7415816238d0
    U(2)=0.1666666667d0
    U(3)=8.664398854d0

!     Guess for FM
    FLOQ=-10d0
    PAR(4)=FLOQ
    PAR(5)=FLOQ
    PAR(12)=FLOQ
    PAR(13)=0.01d0 ! epsilon

!     Eigenvector norms
    PAR(10)=0.

    PAR(25)=0.
    PAR(26)=0.

  END SUBROUTINE STPNT

  SUBROUTINE BCND(NDIM,PAR,ICP,NBC,U0,U1,FB,IJAC,DBC) 
! ---------- ---- 

    IMPLICIT NONE
    INTEGER, INTENT(IN) :: NDIM, ICP(*), NBC, IJAC
    DOUBLE PRECISION, INTENT(IN) :: PAR(*), U0(NDIM), U1(NDIM)
    DOUBLE PRECISION, INTENT(OUT) :: FB(NBC)
    DOUBLE PRECISION, INTENT(INOUT) :: DBC(NBC,*)

    DOUBLE PRECISION g1(3),h1(3),h2(3),A(3,3)
    DOUBLE PRECISION epsilon

!     Periodicity boundary conditions 
!     -------------------------------

    FB(1:3) = U0(1:3) - U1(1:3)
    FB(4:6) = U1(4:6) - U0(4:6)

    IF(NBC==7)THEN
       FB(7) = DOT_PRODUCT(U0(4:6),U0(4:6)) - PAR(10)
       RETURN
    ENDIF

    FB(7) = DOT_PRODUCT(U0(4:6),U0(4:6)) - PAR(25)

    ! Double

    FB(8:10) = U0(7:9) - U1(7:9)
    FB(11:13) = U1(10:12) - U0(10:12)

    FB(14) = DOT_PRODUCT(U0(10:12),U0(10:12)) - PAR(26)

    IF(NBC==14)RETURN

    ! Cycle 1 end-point connection
    CALL RHS(3,U0(1:3),PAR,g1,A,.FALSE.)
    ! Displacement from the cycle; end connection
    h1(1:3)=U1(13:15)-U0(1:3)
     
    ! Eq.(12g)/(17h) - h11
    FB(15) = DOT_PRODUCT(h1(1:3),g1(1:3)) - PAR(21)

    ! cycle 2 starting point connection
    ! For coherence we use U(7-9)
    CALL RHS(3,U0(7:9),PAR,g1,A,.FALSE.)
    ! Displacement from the cycle; start connection
    h2(1:3)=U0(13:15)-U0(7:9)

    ! Eq.(12h)/(17i) - h12
    FB(16) = DOT_PRODUCT(h2(1:3),g1(1:3)) - PAR(22)
    ! Eq.(12i)/(17j) - h21
    FB(17) = DOT_PRODUCT(U0(4:6),h1(1:3)) - PAR(23)
    ! Eq.(12j)/(17k) - h22
    FB(18) = DOT_PRODUCT(U0(10:12),h2(1:3)) - PAR(24)
    ! Eq.(12k)
    FB(19) = DOT_PRODUCT(h2(1:3),h2(1:3)) - PAR(8)
  END SUBROUTINE BCND

  SUBROUTINE ICND(NDIM,PAR,ICP,NINT,U,UOLD,UDOT,UPOLD,FI,IJAC,DINT) 
! ---------- ---- 

    IMPLICIT NONE
    INTEGER, INTENT(IN) :: NDIM, ICP(*), NINT, IJAC
    DOUBLE PRECISION, INTENT(IN) :: PAR(*)
    DOUBLE PRECISION, INTENT(IN) :: U(NDIM),UOLD(NDIM),UDOT(NDIM),UPOLD(NDIM)
    DOUBLE PRECISION, INTENT(OUT) :: FI(NINT)
    DOUBLE PRECISION, INTENT(INOUT) :: DINT(NINT,*)

!   Integral phase condition 
!   ------------------------
    FI(1) = U(1)*UPOLD(1)+U(2)*UPOLD(2)+U(3)*UPOLD(3)
    IF(NINT==1)RETURN
    FI(2) = U(7)*UPOLD(7)+U(8)*UPOLD(8)+U(9)*UPOLD(9)

  END SUBROUTINE ICND

  SUBROUTINE FOPT 
  END SUBROUTINE FOPT

  SUBROUTINE PVLS(NDIM,U,PAR)
    IMPLICIT NONE
    INTEGER, INTENT(IN) :: NDIM
    DOUBLE PRECISION, INTENT(IN) :: U(NDIM)
    DOUBLE PRECISION, INTENT(INOUT) :: PAR(*)
    DOUBLE PRECISION GETP

    DOUBLE PRECISION u0(12),g1(3),g2(3),h1(3),h2(3),A(3,3),b(3),epsilon
    INTEGER I

    IF(NDIM==6)THEN
       DO I=1,6
          PAR(13+I)=GETP('BV0',I,U)
       ENDDO
       PAR(6)=PAR(11)
    ELSEIF(NDIM==12)THEN
      DO I=1,12
         u0(I) = GETP('BV0',I,U)
      ENDDO

      ! f' at base point cycle 1
      CALL RHS(3,u0(1:3),PAR,g1,A,.FALSE.)
      ! f' at base point cycle 2
      CALL RHS(3,u0(7:9),PAR,g2,A,.FALSE.)
      ! start & end of initial point
      epsilon=PAR(13)
      b(1:3) = PAR(14:16)+epsilon*PAR(17:19)

      ! Displacement from the cycle at end connection
      h1(1:3)=b(1:3)-u0(1:3)
      ! Displacement from the cycle at start connection
      h2(1:3)=b(1:3)-u0(7:9)

!     Homotopy parameter values at start continuation
      ! Eq.(12h)/(17i)
      PAR(21) = DOT_PRODUCT(h1(1:3),g1(1:3))
      ! Eq.(12i)/(17j)
      PAR(22) = DOT_PRODUCT(h2(1:3),g2(1:3))
      ! Eq.(12j)/(17k)
      PAR(23) = DOT_PRODUCT(u0(4:6),h1(1:3))
      ! Eq.(12k)/(17l)
      PAR(24) = DOT_PRODUCT(u0(10:12),h2(1:3))

      ! for BC(19)/Eq.(12k)
      PAR(8) = DOT_PRODUCT(h2(1:3),h2(1:3))
   ELSEIF(NDIM==15)THEN
      PAR(27)=GETP('MIN',3,U)
      PAR(28)=GETP('MIN',15,U)
   ENDIF


  END SUBROUTINE PVLS