1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
!----------------------------------------------------------------------
! Redoing the local bifurcation of the model analysed by
! Martin Boer, ch. 4 of thesis.
! Cycle-to-cycle connection 3D food chain
!
! Homoclinic, but set up also for heteroclinic
!
! U(1-3) = limit cycle
! U(4-6) = eigenfunction (ef) stable
! U(7-9) = limit cycle again ("second cycle")
! U(10-12) = ef unstable
! U(13-15) = connecting orbit
!
! George van Voorn, June 20th 2007
! Bart Oldeman, December 2008
!----------------------------------------------------------------------
SUBROUTINE RHS(N,U,PAR,F,DFDU,IJAC)
! ---------- ---
IMPLICIT NONE
INTEGER N
DOUBLE PRECISION U(N),PAR(*),F(N),DFDU(N,N)
LOGICAL IJAC
DOUBLE PRECISION f1,f2
DOUBLE PRECISION d1,d2,x,y,z,a1,a2,b1,b2
! Declaring variables
x=U(1)
y=U(2)
z=U(3)
! Parameter values
d1=PAR(1)
d2=PAR(2)
a1 = 5.d0
a2 = 0.1d0
b1 = 3.d0
b2 = 2.d0
f1=a1/(1d0 + b1*x)
f2=a2/(1d0 + b2*y)
! Formulas
F(1)= x*(1d0 - x) - f1*x*y
F(2)= f1*x*y - d1*y - f2*y*z
F(3)= f2*y*z - d2*z
IF(.NOT.IJAC)RETURN
! Jacobian elements
DFDU(1,1)=1d0-2*x-f1*y+b1*x*y*(f1**2)/a1
DFDU(1,2)=-f1*x
DFDU(1,3)=0.0d0
DFDU(2,1)=f1*y-b1*x*y*(f1**2)/a1
DFDU(2,2)=f1*x-d1-f2*z+b2*y*z*(f2**2)/a2
DFDU(2,3)=-f2*y
DFDU(3,1)=0.0d0
DFDU(3,2)=f2*z-b2*y*z*(f2**2)/a2
DFDU(3,3)=f2*y-d2
END SUBROUTINE RHS
SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)
! ---------- ---
IMPLICIT NONE
INTEGER NDIM,ICP(*),IJAC
DOUBLE PRECISION U(NDIM),PAR(*),F(NDIM),DFDU(NDIM,*),DFDP(NDIM,*)
DOUBLE PRECISION A(3,3)
CALL RHS(3,U,PAR,F,A,NDIM/=3)
IF(NDIM==3)RETURN
F(1:3) = PAR(11)*F(1:3)
IF(NDIM==6)THEN
! Variational equations
! PAR(11) = cycle period
! PAR(12) = log(FM)
F(4:6) = PAR(11)*MATMUL(A(:,:),U(4:6))-PAR(12)*U(4:6)
RETURN
ENDIF
! Adjoint variational equations
! PAR(11) = cycle period
! PAR(4) = log(FM)
F(4:6) = -PAR(11)*MATMUL(TRANSPOSE(A(:,:)),U(4:6))-PAR(4)*U(4:6)
! Functions limit cycle doubled U(7-9)
! We pretend this is a second different cycle
CALL RHS(3,U(7:9),PAR,F(7:9),A,.TRUE.)
F(7:9) = PAR(6)*F(7:9)
! Period=PAR(6), obviously equal to PAR(11), U(10-12)
! PAR(5) = log(FM)
F(10:12) = -PAR(6)*MATMUL(TRANSPOSE(A(:,:)),U(10:12))-PAR(5)*U(10:12)
IF(NDIM==12)RETURN
! Connection rescaled, PAR(7) = Tc
CALL RHS(3,U(13:15),PAR,F(13:15),A,.FALSE.)
F(13:15) = PAR(7)*F(13:15)
END SUBROUTINE FUNC
SUBROUTINE STPNT(NDIM,U,PAR)
! ---------- ---
IMPLICIT NONE
INTEGER NDIM
DOUBLE PRECISION, INTENT(INOUT) :: U(NDIM), PAR(*)
DOUBLE PRECISION FLOQ,epsilon
IF(NDIM==12)THEN
! extending from NDIM=6 to NDIM=12
U(7:12)=U(1:6)
RETURN
ELSEIF(NDIM==15)THEN
! extending from NDIM=12 to NDIM=15
epsilon=PAR(13)
U(13:15)=PAR(14:16) + epsilon*PAR(17:19)
RETURN
ENDIF
! 0.16<par1=d1<0.32,0.0075<par2=d2<0.015
PAR(1)=0.5d0
PAR(2)=0.0125d0
U(1)=0.7415816238d0
U(2)=0.1666666667d0
U(3)=8.664398854d0
! Guess for FM
FLOQ=-10d0
PAR(4)=FLOQ
PAR(5)=FLOQ
PAR(12)=FLOQ
PAR(13)=0.01d0 ! epsilon
! Eigenvector norms
PAR(10)=0.
PAR(25)=0.
PAR(26)=0.
END SUBROUTINE STPNT
SUBROUTINE BCND(NDIM,PAR,ICP,NBC,U0,U1,FB,IJAC,DBC)
! ---------- ----
IMPLICIT NONE
INTEGER, INTENT(IN) :: NDIM, ICP(*), NBC, IJAC
DOUBLE PRECISION, INTENT(IN) :: PAR(*), U0(NDIM), U1(NDIM)
DOUBLE PRECISION, INTENT(OUT) :: FB(NBC)
DOUBLE PRECISION, INTENT(INOUT) :: DBC(NBC,*)
DOUBLE PRECISION g1(3),h1(3),h2(3),A(3,3)
DOUBLE PRECISION epsilon
! Periodicity boundary conditions
! -------------------------------
FB(1:3) = U0(1:3) - U1(1:3)
FB(4:6) = U1(4:6) - U0(4:6)
IF(NBC==7)THEN
FB(7) = DOT_PRODUCT(U0(4:6),U0(4:6)) - PAR(10)
RETURN
ENDIF
FB(7) = DOT_PRODUCT(U0(4:6),U0(4:6)) - PAR(25)
! Double
FB(8:10) = U0(7:9) - U1(7:9)
FB(11:13) = U1(10:12) - U0(10:12)
FB(14) = DOT_PRODUCT(U0(10:12),U0(10:12)) - PAR(26)
IF(NBC==14)RETURN
! Cycle 1 end-point connection
CALL RHS(3,U0(1:3),PAR,g1,A,.FALSE.)
! Displacement from the cycle; end connection
h1(1:3)=U1(13:15)-U0(1:3)
! Eq.(12g)/(17h) - h11
FB(15) = DOT_PRODUCT(h1(1:3),g1(1:3)) - PAR(21)
! cycle 2 starting point connection
! For coherence we use U(7-9)
CALL RHS(3,U0(7:9),PAR,g1,A,.FALSE.)
! Displacement from the cycle; start connection
h2(1:3)=U0(13:15)-U0(7:9)
! Eq.(12h)/(17i) - h12
FB(16) = DOT_PRODUCT(h2(1:3),g1(1:3)) - PAR(22)
! Eq.(12i)/(17j) - h21
FB(17) = DOT_PRODUCT(U0(4:6),h1(1:3)) - PAR(23)
! Eq.(12j)/(17k) - h22
FB(18) = DOT_PRODUCT(U0(10:12),h2(1:3)) - PAR(24)
! Eq.(12k)
FB(19) = DOT_PRODUCT(h2(1:3),h2(1:3)) - PAR(8)
END SUBROUTINE BCND
SUBROUTINE ICND(NDIM,PAR,ICP,NINT,U,UOLD,UDOT,UPOLD,FI,IJAC,DINT)
! ---------- ----
IMPLICIT NONE
INTEGER, INTENT(IN) :: NDIM, ICP(*), NINT, IJAC
DOUBLE PRECISION, INTENT(IN) :: PAR(*)
DOUBLE PRECISION, INTENT(IN) :: U(NDIM),UOLD(NDIM),UDOT(NDIM),UPOLD(NDIM)
DOUBLE PRECISION, INTENT(OUT) :: FI(NINT)
DOUBLE PRECISION, INTENT(INOUT) :: DINT(NINT,*)
! Integral phase condition
! ------------------------
FI(1) = U(1)*UPOLD(1)+U(2)*UPOLD(2)+U(3)*UPOLD(3)
IF(NINT==1)RETURN
FI(2) = U(7)*UPOLD(7)+U(8)*UPOLD(8)+U(9)*UPOLD(9)
END SUBROUTINE ICND
SUBROUTINE FOPT
END SUBROUTINE FOPT
SUBROUTINE PVLS(NDIM,U,PAR)
IMPLICIT NONE
INTEGER, INTENT(IN) :: NDIM
DOUBLE PRECISION, INTENT(IN) :: U(NDIM)
DOUBLE PRECISION, INTENT(INOUT) :: PAR(*)
DOUBLE PRECISION GETP
DOUBLE PRECISION u0(12),g1(3),g2(3),h1(3),h2(3),A(3,3),b(3),epsilon
INTEGER I
IF(NDIM==6)THEN
DO I=1,6
PAR(13+I)=GETP('BV0',I,U)
ENDDO
PAR(6)=PAR(11)
ELSEIF(NDIM==12)THEN
DO I=1,12
u0(I) = GETP('BV0',I,U)
ENDDO
! f' at base point cycle 1
CALL RHS(3,u0(1:3),PAR,g1,A,.FALSE.)
! f' at base point cycle 2
CALL RHS(3,u0(7:9),PAR,g2,A,.FALSE.)
! start & end of initial point
epsilon=PAR(13)
b(1:3) = PAR(14:16)+epsilon*PAR(17:19)
! Displacement from the cycle at end connection
h1(1:3)=b(1:3)-u0(1:3)
! Displacement from the cycle at start connection
h2(1:3)=b(1:3)-u0(7:9)
! Homotopy parameter values at start continuation
! Eq.(12h)/(17i)
PAR(21) = DOT_PRODUCT(h1(1:3),g1(1:3))
! Eq.(12i)/(17j)
PAR(22) = DOT_PRODUCT(h2(1:3),g2(1:3))
! Eq.(12j)/(17k)
PAR(23) = DOT_PRODUCT(u0(4:6),h1(1:3))
! Eq.(12k)/(17l)
PAR(24) = DOT_PRODUCT(u0(10:12),h2(1:3))
! for BC(19)/Eq.(12k)
PAR(8) = DOT_PRODUCT(h2(1:3),h2(1:3))
ELSEIF(NDIM==15)THEN
PAR(27)=GETP('MIN',3,U)
PAR(28)=GETP('MIN',15,U)
ENDIF
END SUBROUTINE PVLS
|