File: pcl.f90

package info (click to toggle)
auto-07p 0.9.1%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 16,200 kB
  • sloc: fortran: 22,644; f90: 19,340; python: 19,045; ansic: 11,116; sh: 1,079; makefile: 618; perl: 339
file content (258 lines) | stat: -rw-r--r-- 6,684 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
!---------------------------------------------------------------------
!---------------------------------------------------------------------
! pcl: Finding a point-to-cycle heteroclinic connection in the
!      Lorenz equations
! 
! Parameters:
!   PAR(1) : rho
!   PAR(2) : beta
!   PAR(3) : sigma
!
!   PAR(11) : T: period of the cycle
!   PAR(12) : mu: log of the Floquet multiplier
!   PAR(13) : h: norm of eigenfunction for cycle at 0
!   PAR(14) : T^+: time for connection from section to cycle (U(7:9))
!   PAR(15) : delta: distance from end connection to cycle
!   PAR(16) : T^-: time for connection from point to section (U(10:12))
!   PAR(17) : eps: distance from point to start connection
!   PAR(21) : sigma+: U0(7)-10 (x-distance W^s(P) from section x=10)
!   PAR(22) : sigma-: U1(10)-10 (x-distance W^u(E) from section x=10)
!   PAR(23) : eta: gap size for Lin vector
!   PAR(24) : Z_x: Lin vector (x-coordinate)
!   PAR(25) : Z_y: Lin vector (y-coordinate)
!   PAR(26) : Z_z: Lin vector (z-coordinate)
!---------------------------------------------------------------------
!---------------------------------------------------------------------

  SUBROUTINE RHS(U,PAR,F,JAC,A)

    IMPLICIT NONE
    DOUBLE PRECISION, INTENT(IN) :: U(3), PAR(*)
    LOGICAL, INTENT(IN) :: JAC
    DOUBLE PRECISION, INTENT(OUT) :: F(3), A(3,3)

    DOUBLE PRECISION rho, beta, sigma
    DOUBLE PRECISION x, y, z

    rho = PAR(1)
    beta = PAR(2)
    sigma = PAR(3)

    x = U(1)
    y = U(2)
    z = U(3)

    F(1) = sigma * (y - x)
    F(2) = rho * x - y - x * z
    F(3) = x * y - beta * z

    IF(JAC)THEN
       A(1,1) = -sigma
       A(1,2) = sigma
       A(1,3) = 0

       A(2,1) = rho - z
       A(2,2) = -1
       A(2,3) = -x

       A(3,1) = y
       A(3,2) = x
       A(3,3) = -beta
    ENDIF

  END SUBROUTINE RHS

  SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP) 
! ---------- --- 

    IMPLICIT NONE
    INTEGER, INTENT(IN) :: NDIM, IJAC, ICP(*)
    DOUBLE PRECISION, INTENT(IN) :: U(NDIM), PAR(*)
    DOUBLE PRECISION, INTENT(OUT) :: F(NDIM)
    DOUBLE PRECISION, INTENT(INOUT) :: DFDU(NDIM,NDIM),DFDP(NDIM,*)

    DOUBLE PRECISION T,mu
    DOUBLE PRECISION A(3,3)

    CALL RHS(U,PAR,F,NDIM>3,A)
    IF(NDIM==3)RETURN

    F(4:6) = MATMUL(A,U(4:6))

    T = PAR(11)
    F(1:6) = F(1:6) * T

    ! log of Floquet multiplier in PAR(12)
    mu = PAR(12)
    F(4:6) = F(4:6) - mu*U(4:6)

    IF (NDIM==6) RETURN

    CALL RHS(U(7:9),PAR,F(7:9),.FALSE.,A)

    T = PAR(14)
    F(7:9) = F(7:9) * T

    IF (NDIM==9) RETURN

    CALL RHS(U(10:12),PAR,F(10:12),.FALSE.,A)

    T = PAR(16)
    F(10:12) = F(10:12) * T

  END SUBROUTINE FUNC

  SUBROUTINE STPNT(NDIM,U,PAR,T)
  !--------- -----
  
    IMPLICIT NONE
    INTEGER, INTENT(IN) :: NDIM
    DOUBLE PRECISION, INTENT(INOUT) :: U(NDIM),PAR(*)
    DOUBLE PRECISION, INTENT(IN) :: T

    DOUBLE PRECISION, PARAMETER :: delta = 1d-7, eps = 1d-7
    DOUBLE PRECISION rho, beta, sigma, ev(3), nev
    DOUBLE PRECISION, SAVE :: s(6)

    IF(NDIM==9)THEN
       IF(T==0)THEN
          s(1:6) = U(1:6)
       ENDIF
       U(7:9) = s(1:3) + delta*s(4:6)
       RETURN
    ELSEIF(NDIM==12)THEN
       rho = PAR(1)
       beta = PAR(2)
       sigma = PAR(3)

       ! unstable eigenvector at the 0 equilibrium
       ev(1) = rho/(-0.5+0.5*sigma+0.5*sqrt(1-2*sigma+sigma*sigma+4*rho*sigma))
       ev(2) = 1
       ev(3) = 0
       nev = sqrt(DOT_PRODUCT(ev,ev))
       ev(1:3) = ev(1:3) / nev

       U(10:12) = eps*ev(1:3)
       RETURN
    ENDIF

    rho = 0
    beta = 8d0/3d0
    sigma = 10d0
    PAR(1:3) = (/rho,beta,sigma/)
    PAR(15) = delta
    PAR(17) = eps
    PAR(21:22) = 0

    U(1:3) = 0

  END SUBROUTINE STPNT

  SUBROUTINE PVLS(NDIM,U,PAR)
  !--------- ----

    IMPLICIT NONE
    INTEGER, INTENT(IN) :: NDIM
    DOUBLE PRECISION, INTENT(IN) :: U(NDIM)
    DOUBLE PRECISION, INTENT(INOUT) :: PAR(*)
    
    DOUBLE PRECISION, EXTERNAL :: GETP
    DOUBLE PRECISION d(3),normlv
    INTEGER i, NBC
    LOGICAL, SAVE :: FIRST = .TRUE.

    IF (FIRST) THEN ! initialization for BCND
       FIRST = .FALSE.
       IF (NDIM==9) THEN
          PAR(21) = GETP("BV0",7,U) - 10
       ELSEIF (NDIM == 12) THEN
          NBC = AINT(GETP("NBC",0,U))
          IF (NBC == 15) THEN
             PAR(22) = GETP("BV1",10,U) - 10
          ELSE
             ! check if Lin vector initialized:
             IF (DOT_PRODUCT(PAR(24:26),PAR(24:26)) > 0) RETURN
             DO i=1,3
                d(i) = GETP("BV0",6+i,U) - GETP("BV1",9+i,U)
             ENDDO
             normlv = sqrt(DOT_PRODUCT(d,d))
             ! gap size in PAR(23)
             PAR(23) = normlv
             ! Lin vector in PAR(24)-PAR(26)
             PAR(24:26) = d(1:3)/normlv
          ENDIF
       ENDIF
       RETURN
    ENDIF

  END SUBROUTINE PVLS

  SUBROUTINE BCND(NDIM,PAR,ICP,NBC,U0,U1,FB,IJAC,DBC)
  !--------- ----

    IMPLICIT NONE
    INTEGER, INTENT(IN) :: NDIM, ICP(*), NBC, IJAC
    DOUBLE PRECISION, INTENT(IN) :: PAR(*), U0(NDIM), U1(NDIM)
    DOUBLE PRECISION, INTENT(OUT) :: FB(NBC)
    DOUBLE PRECISION, INTENT(INOUT) :: DBC(NBC,*)

    DOUBLE PRECISION rho, beta, sigma, delta, eps, ev(3), nev, eta

    ! Periodicity boundary conditions on state variables
    FB(1:3) = U0(1:3) - U1(1:3)

    ! Floquet boundary condition
    FB(4:6) = U1(4:6) - U0(4:6)

    ! normalization
    FB(7) = PAR(13) - DOT_PRODUCT(U0(4:6),U0(4:6))
    IF (NBC==7) RETURN

    delta = PAR(15)
    FB(8:10) = U1(7:9) - (U0(1:3) + delta*U0(4:6))
    FB(11) = U0(7) - 10 - PAR(21)

    IF (NBC==11) RETURN

    rho = PAR(1)
    beta = PAR(2)
    sigma = PAR(3)
    eps = PAR(17)

    ! unstable eigenvector at the 0 equilibrium
    ev(1) = rho/(-0.5+0.5*sigma+0.5*sqrt(1-2*sigma+sigma*sigma+4*rho*sigma))
    ev(2) = 1
    ev(3) = 0
    nev = sqrt(DOT_PRODUCT(ev,ev))
    ev(1:3) = ev(1:3) / nev

    FB(12:14) = U0(10:12) - eps*ev(1:3)

    IF (NBC==15) THEN
       FB(15) = U1(10) - 10 - PAR(22)
       RETURN
    ENDIF

    eta = PAR(23)
    FB(15:17) = U0(7:9) - U1(10:12) - eta*PAR(24:26)

  END SUBROUTINE BCND

  SUBROUTINE ICND(NDIM,PAR,ICP,NINT,U,UOLD,UDOT,UPOLD,FI,IJAC,DINT)
  !--------- ----
    IMPLICIT NONE
    INTEGER, INTENT(IN) :: NDIM, ICP(*), NINT, IJAC
    DOUBLE PRECISION, INTENT(IN) :: PAR(*)
    DOUBLE PRECISION, INTENT(IN) :: U(NDIM), UOLD(NDIM), UDOT(NDIM), UPOLD(NDIM)
    DOUBLE PRECISION, INTENT(OUT) :: FI(NINT)
    DOUBLE PRECISION, INTENT(INOUT) :: DINT(NINT,*)

    ! Integral phase condition
    FI(1) = DOT_PRODUCT(U(1:3),UPOLD(1:3))
    IF (NINT==1) RETURN

    FI(2) = DOT_PRODUCT(UPOLD(10:12),U(10:12)-UOLD(10:12))
  END SUBROUTINE ICND

  SUBROUTINE FOPT(NDIM,U,ICP,PAR,IJAC,FS,DFDU,DFDP)
  END SUBROUTINE FOPT