File: compute_lagrange_points_family.auto

package info (click to toggle)
auto-07p 0.9.1%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 16,200 kB
  • sloc: fortran: 22,644; f90: 19,340; python: 19,045; ansic: 11,116; sh: 1,079; makefile: 618; perl: 339
file content (41 lines) | stat: -rw-r--r-- 1,378 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
# This script computes the initial circle of solutions for mu=0
# as well as the bifurcating branches which give us the
# Lagrange points.  It then plots the full bifurcation diagram.

# Load 3d.c and c.3d into the AUTO CLUI

# Add a stopping condition so we only compute the loop once

# We tell AUTO to stop when parameter 16 is 0.991, parameter 1 is -0.1,
# or parameter 1 is 1.1.  If parameter1 is 0.5 we just report
# a point.

# We also want to compute branches for the first 4 bifurcation
# points.

# IPS=0 tells AUTO to compute a family of equilibria.

# Compute the circle.
# This command parses returns a Python object which contains 
# all of the data in the file in an easy to use format.
circle = run('3d',UZR={-16:0.991, -1:[-0.1,1.1], 1:0.5}, MXBF=-4, IPS=0)

# Use the label of the last solution of the previous calculation
# and use this solution as the starting point of the next
# calculation.

# Do not compute any bifurcating branches.

# We tell AUTO to stop when parameter 16 is 1.0, parameter 1 is -0.1,
# or parameter 1 is 1.1.  If parameter1 is 0.5 we just report
# a point.

# Run the calculation
lagrangep = run(circle, MXBF=0, UZR={-16:1.0, -1:[-0.1,1.1], 1:0.5})

# Save the circle and data in b.lagrange_points,  s.lagrange_points,
# and d.lagrange_points. 
save(circle + lagrangep, 'lagrange_points')

# Plot the solutions
p3('lagrange_points')