File: cb.auto

package info (click to toggle)
auto-07p 0.9.1%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 16,200 kB
  • sloc: fortran: 22,644; f90: 19,340; python: 19,045; ansic: 11,116; sh: 1,079; makefile: 618; perl: 339
file content (57 lines) | stat: -rw-r--r-- 2,499 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# AUTO demo snh
#
# Bifurcations of global reinjection orbits near a saddle-node Hopf bifurcation
# compute the codimension-one PtoE connection via Lin's method

print "\n1st run - find and continue equilibrium a : x=y=0, phi=-acos(-0.5*nu2)"
# [ b would be x=y=0, phi=acos(-0.5*nu2) ]
r1 = run(e='snh',ICP=['nu1'],NDIM=3,ILP=0,ITNW=7,ITMX=20,IPS=1,
         UZR={},PAR={},STOP=['HB1'],DS=0.1,DSMAX=1.0,NPAR=26,
         unames={1:'xgamma',2:'ygamma',3:'phigamma',4:'x',5:'y',6:'phi',
                 7:'x-',8:'y-',9:'phi-',10:'x+',11:'y+',12:'phi+'},
         parnames={1:'nu1',2:'nu2',3:'d',
                   5:'delta',6:'eps',7:'mu',8:'h',9:'T-',10:'T+',11:'T',
                   21:'sigma-',22:'sigma+',23:'eta',24:'Zx',25:'Zy',26:'Zz'})

print "\n2nd run - switch to the periodic orbit and continue in nu1 up to 0.74"
r2 = run(r1('HB1'),ICP=['nu1','T'],IPS=2,NTST=100,
         STOP=[],UZSTOP={'nu1':0.74},DSMAX=0.1)

print "\n3rd run - extend the system"
r3 = run(r2('UZ1'),ICP=['mu','h','T'],IPS=4,NDIM=6,NBC=7,NINT=1,
         STOP=['BP1'],UZSTOP={},DSMAX=1)

print "\n4th run - normalize the Floquet bundle"
print "also put a starting value into sigma- (which"
print "measures the distance to Sigma = { phi=pi })"
r4 = run(r3('BP1'),ISW=-1,
         STOP=[],UZSTOP={'h':1.0},DSMAX=100)

print "\n5th run - integrate away from the periodic orbit, UZ points denote"
print " intersections with Sigma"
r5 = run(r4('UZ1'),ISW=0,ICP=['T-','mu','T','sigma-'],NDIM=9,NBC=11,
         UZSTOP={'sigma-':0},DS=1.0)

print "\n6th run - integrate backwards from the equilibrium b : x=y=0, phi=acos(-0.5*nu2)"
print "up to Sigma + put starting data for Lin vector and Lin gap in Zx, Zy, Zz, and eta."
r6 = run(r5('UZ1'),ICP=['T+','sigma+','T-','mu','T'],NDIM=12,NBC=15,NPR=10,
         UZSTOP={'sigma+':0})

print "\n7th run - close the gap (with some intermediate solutions)"
r7 = run(r6('UZ1'),ICP=['eta','nu1','delta','eps','T+','T-','mu','T'],
         NBC=17,NINT=2,NPR=5,THL={'T':0,'T-':0,'T+':0},
         UZSTOP={'eta':0},DS=-0.01,DSMAX=0.01)
save(r7,'closegap')

# plot this, have a look at the solution coordinates 'x-'-vs-'phi-' and 'x+'-vs-'phi+'
#plot(r7)
#wait()

print "\n8th run - keep the gap closed and continue in nu1,nu2"
start8 = load(r7('UZ1'),ICP=['nu1','mu','delta','eps','nu2','T+','T-','T'],
              UZSTOP={},ILP=1,NPR=100,ISP=0,DS=0.1,DSMAX=0.1)
r8 = merge(run(start8,UZSTOP={'delta':-3e-3}) + run(start8,DS='-',STOP=['LP1']))
save(r8,'cb')

clean()
print "\nDone."