1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
|
# AUTO demo snh
#
# Bifurcations of global reinjection orbits near a saddle-node Hopf bifurcation
# compute the 1-reinjection homoclinic orbit with respect to equilibrium point
# b
print "\n1st run - homotopy backwards in time from equilibrium b : x=y=0, phi=acos(-0.5*nu2)"
r1 = run(e='snh',ICP=['T','omega'],NDIM=3,ILP=0,ITNW=7,IPS=9,ISTART=3,IEQUIB=-2,
PAR={'nu1':0.5,'nu2':-1.88},NPAR=26,
UZSTOP={'omega':0},DS=-0.01,
unames={1:'xgamma',2:'ygamma',3:'phigamma'},
parnames={1:'nu1',2:'nu2',3:'d',11:'T',20:'omega'})
print "\n2nd run - improve connection"
r2 = run(r1('UZ1'),ICP=['T','nu1'],DSMAX=10,UZSTOP={'T':-2000})
print "\n3rd run - follow connection forwards and backwards"
st = load(r2('UZ1'),ICP=['nu1','nu2'],
IEQUIB=1,ISTART=1,DSMIN=1e-9,DS=-0.005,DSMAX=0.005)
r3 = merge(run(st,UZSTOP={},ILP=1,STOP=['LP20'],NTST=200) +
run(st,UZSTOP={'nu2':-1.999},NTST=50,DS='-'))
save(r3,'h1b')
clean()
print "\nDone."
|