1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
!---------------------------------------------------------------------
!---------------------------------------------------------------------
! snh: Bifurcations of global reinjection orbits near a saddle-node
! Hopf bifurcation: cycle-to-point connections
!
! Parameters:
! PAR(1) : nu1
! PAR(2) : nu2
! PAR(3) : d
! PAR(4) : codimension of connection (0 or 1)
!
! PAR(5) : delta: distance from cycle to start connection
! PAR(6) : eps: distance from end connection to point
! PAR(7) : mu: log of the Floquet multiplier
! PAR(8) : h: norm of eigenfunction for cycle at 0
! PAR(9) : T^-: time for connection from cycle (U(7:9)) to section
! PAR(10) : T^+: time for connection from section (U(10:12)) to point
! PAR(11) : T: period of the cycle
! PAR(21) : sigma-: U1(9)-pi (phi-distance W^u(P) from section phi=pi)
! ( distance to W^u(b) for codim 0 connection)
! PAR(22) : sigma+: U0(12)-pi (phi-distance W^s(E) from section phi=pi)
! PAR(23) : eta: gap size for Lin vector
! PAR(24) : Z_x: Lin vector (x-coordinate)
! PAR(25) : Z_y: Lin vector (y-coordinate)
! PAR(26) : Z_z: Lin vector (z-coordinate)
!---------------------------------------------------------------------
!---------------------------------------------------------------------
SUBROUTINE RHS(U,PAR,F,JAC,A)
IMPLICIT NONE
DOUBLE PRECISION, INTENT(IN) :: U(3), PAR(*)
LOGICAL, INTENT(IN) :: JAC
DOUBLE PRECISION, INTENT(OUT) :: F(3), A(3,3)
DOUBLE PRECISION x, y, phi
DOUBLE PRECISION nu1, nu2, alpha, beta, omega, c, d, fp, s
DOUBLE PRECISION sphi, x2y2, cphinu, cphinu2
nu1 = PAR(1)
nu2 = PAR(2)
d = PAR(3)
fp = 4*atan(1.0d0)*d
alpha = -1
s = -1
c = 0
omega = 1
beta = 0
x = U(1)
y = U(2)
phi = U(3)
sphi = sin(phi)
x2y2 = x*x + y*y
cphinu = 2*cos(phi)+nu2
cphinu2 = cphinu*cphinu
F(1) = nu1*x - omega*y - (alpha*x - beta*y)*sphi - x2y2*x + d*cphinu2
F(2) = nu1*y + omega*x - (alpha*y + beta*x)*sphi - x2y2*y + fp*cphinu2
F(3) = nu2 + s*x2y2 + 2.0*cos(phi) + c*x2y2*x2y2
IF(JAC)THEN
A(1,1) = nu1 - alpha*sphi - 3*x**2 - y**2
A(1,2) = -omega + beta*sphi - 2*x*y
A(1,3) = -(alpha*x - beta*y)*cos(phi) - d*4*(2*cos(phi)+nu2)*sphi
A(2,1) = omega - beta*sphi - 2*x*y
A(2,2) = nu1 - alpha*sphi - 3*y**2 - x*x
A(2,3) = -(alpha*y + beta*x)*cos(phi) - fp*4*(2*cos(phi) + nu2)*sphi
A(3,1) = 2*s*x + 4*c*x2y2*x
A(3,2) = 2*s*y + 4*c*x2y2*y
A(3,3) = -2*sphi
ENDIF
END SUBROUTINE RHS
SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP)
! ---------- ---
IMPLICIT NONE
INTEGER, INTENT(IN) :: NDIM, IJAC, ICP(*)
DOUBLE PRECISION, INTENT(IN) :: U(NDIM), PAR(*)
DOUBLE PRECISION, INTENT(OUT) :: F(NDIM)
DOUBLE PRECISION, INTENT(INOUT) :: DFDU(NDIM,NDIM),DFDP(NDIM,*)
DOUBLE PRECISION T,mu
DOUBLE PRECISION A(3,3)
CALL RHS(U,PAR,F,NDIM>3,A)
IF(NDIM==3)RETURN
F(4:6) = MATMUL(A,U(4:6))
T = PAR(11)
F(1:6) = F(1:6) * T
! log of Floquet multiplier in PAR(7)
mu = PAR(7)
F(4:6) = F(4:6) - mu*U(4:6)
IF (NDIM==6) RETURN
CALL RHS(U(7:9),PAR,F(7:9),.FALSE.,A)
T = PAR(9)
F(7:9) = F(7:9) * T
IF (NDIM==9) RETURN
CALL RHS(U(10:12),PAR,F(10:12),.FALSE.,A)
T = PAR(10)
F(10:12) = F(10:12) * T
END SUBROUTINE FUNC
SUBROUTINE STPNT(NDIM,U,PAR,T)
!--------- -----
IMPLICIT NONE
INTEGER, INTENT(IN) :: NDIM
DOUBLE PRECISION, INTENT(INOUT) :: U(NDIM),PAR(*)
DOUBLE PRECISION, INTENT(IN) :: T
INTEGER, PARAMETER :: codim = 1
DOUBLE PRECISION, PARAMETER :: nu1 = 0, nu2 = -1.46d0, d = 0.01d0
DOUBLE PRECISION, PARAMETER :: delta = -1d-5, eps = 1d-6
DOUBLE PRECISION fp(3), ev(3), pi
DOUBLE PRECISION, SAVE :: s(6)
IF(NDIM==9)THEN
IF(T==0)THEN
s(1:6) = U(1:6)
ENDIF
U(7:9) = s(1:3) + PAR(5)*s(4:6)
RETURN
ELSEIF(NDIM==12)THEN
fp = (/0d0, 0d0, acos(-nu2/2)/)
ev = (/0d0, 0d0, 1d0/)
U(10:12) = fp(1:3) + PAR(6)*ev(1:3)
RETURN
ENDIF
PAR(1:3) = (/nu1,nu2,d/)
PAR(4) = codim
PAR(5) = delta
PAR(6) = eps
PAR(21:22) = 0.0
! homotopy: equilibrium b and its phase-shifted version, to find
! the "heteroclinic" orbit in negative time.
pi = 4 * ATAN(1D0)
PAR(11) = -0.1
PAR(12) = 0
PAR(13) = 0
PAR(14) = acos(-PAR(2)/2)
PAR(15) = 0
PAR(16) = 0
PAR(17) = acos(-PAR(2)/2)+2*pi
PAR(18) = 0.01d0 ! epsilon_0 distance
! equilibrium a
U(1:3) = (/ 0.0d0, 0.0d0, 2*pi-acos(-nu2/2) /)
END SUBROUTINE STPNT
SUBROUTINE PVLS(NDIM,U,PAR)
!--------- ----
IMPLICIT NONE
INTEGER, INTENT(IN) :: NDIM
DOUBLE PRECISION, INTENT(IN) :: U(NDIM)
DOUBLE PRECISION, INTENT(INOUT) :: PAR(*)
DOUBLE PRECISION, EXTERNAL :: GETP
DOUBLE PRECISION d(3), normlv
INTEGER i, NBC, codim
DOUBLE PRECISION pi
LOGICAL, SAVE :: FIRST = .TRUE.
IF (FIRST) THEN
FIRST = .FALSE.
! initialization for BCND
pi = 4d0 * ATAN(1d0)
IF (NDIM==9) THEN
codim = NINT(PAR(4))
IF (codim == 0) THEN
IF (PAR(21)==0) THEN
! distance to W^u(b) where b is the phase-shifted equilibrium
PAR(21) = GETP("BV1",9,U) - PAR(17)
ENDIF
ELSE
PAR(21) = GETP("BV0",9,U) - pi
ENDIF
ELSEIF (NDIM==12) THEN
NBC = AINT(GETP("NBC",0,U))
IF (NBC==15) THEN
PAR(22) = GETP("BV0",12,U) - pi
ELSE
! check if Lin vector initialized:
IF (DOT_PRODUCT(PAR(24:26),PAR(24:26)) > 0) RETURN
DO i=1,3
d(i) = GETP("BV1",6+i,U) - GETP("BV0",9+i,U)
ENDDO
normlv = sqrt(DOT_PRODUCT(d,d))
! gap size in PAR(23)
PAR(23) = normlv
! Lin vector in PAR(24)-PAR(26)
PAR(24:26) = d(1:3)/normlv
ENDIF
ENDIF
ENDIF
END SUBROUTINE PVLS
SUBROUTINE BCND(NDIM,PAR,ICP,NBC,U0,U1,FB,IJAC,DBC)
!--------- ----
IMPLICIT NONE
INTEGER, INTENT(IN) :: NDIM, ICP(*), NBC, IJAC
DOUBLE PRECISION, INTENT(IN) :: PAR(*), U0(NDIM), U1(NDIM)
DOUBLE PRECISION, INTENT(OUT) :: FB(NBC)
DOUBLE PRECISION, INTENT(INOUT) :: DBC(NBC,*)
DOUBLE PRECISION nu2, delta, eps, fp(3), ev(3), eta
DOUBLE PRECISION pi
INTEGER codim
! Periodicity boundary conditions on state variables
FB(1:3) = U0(1:3) - U1(1:3)
! Floquet boundary condition
FB(4:6) = U1(4:6) - U0(4:6)
! normalization
FB(7) = PAR(8) - DOT_PRODUCT(U0(4:6),U0(4:6))
IF (NBC==7) RETURN
delta = PAR(5)
FB(8:10) = U0(7:9) - (U0(1:3) + delta*U0(4:6))
pi = 4d0 * ATAN(1d0)
codim = NINT(PAR(4))
IF(codim == 0)THEN
! projection boundary condition for codimension-zero connection
nu2 = PAR(2)
FB(11) = COS(U1(9) - PAR(21)) +nu2/2
RETURN
ENDIF
FB(11) = U1(9) - pi - PAR(21)
IF (NBC==11) RETURN
nu2 = PAR(2)
eps = PAR(6)
IF (abs(nu2) > 2) THEN
! truncate nu2 to [-2,2] to avoid floating point exceptions with acos
nu2 = sign(2d0, nu2)
ENDIF
fp = (/0d0, 0d0, acos(-nu2/2)/)
ev = (/0d0, 0d0, 1d0/)
FB(12:14) = U1(10:12) - (fp(1:3) + eps*ev(1:3))
IF (NBC==15) THEN
FB(15) = U0(12) - pi - PAR(22)
RETURN
ENDIF
eta = PAR(23)
FB(15:17) = U1(7:9) - U0(10:12) - eta*PAR(24:26)
END SUBROUTINE BCND
SUBROUTINE ICND(NDIM,PAR,ICP,NINTS,U,UOLD,UDOT,UPOLD,FI,IJAC,DINT)
!--------- ----
IMPLICIT NONE
INTEGER, INTENT(IN) :: NDIM, ICP(*), NINTS, IJAC
DOUBLE PRECISION, INTENT(IN) :: PAR(*)
DOUBLE PRECISION, INTENT(IN) :: U(NDIM), UOLD(NDIM), UDOT(NDIM), UPOLD(NDIM)
DOUBLE PRECISION, INTENT(OUT) :: FI(NINTS)
DOUBLE PRECISION, INTENT(INOUT) :: DINT(NINTS,*)
INTEGER codim
! Integral phase condition
FI(1) = DOT_PRODUCT(U(1:3),UPOLD(1:3))
IF (NINTS==1) RETURN
codim = NINT(PAR(4))
IF (codim == 0) THEN
! phase condition for codimension-zero connection
FI(2) = DOT_PRODUCT(UPOLD(7:9),U(7:9)-UOLD(7:9))
RETURN
ENDIF
FI(2) = DOT_PRODUCT(UPOLD(10:12),U(10:12)-UOLD(10:12))
END SUBROUTINE ICND
SUBROUTINE FOPT(NDIM,U,ICP,PAR,IJAC,FS,DFDU,DFDP)
END SUBROUTINE FOPT
|