File: snh.f90

package info (click to toggle)
auto-07p 0.9.1%2Bdfsg-7
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 16,200 kB
  • sloc: fortran: 22,644; f90: 19,340; python: 19,045; ansic: 11,116; sh: 1,079; makefile: 618; perl: 339
file content (301 lines) | stat: -rw-r--r-- 8,438 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
!---------------------------------------------------------------------
!---------------------------------------------------------------------
! snh: Bifurcations of global reinjection orbits near a saddle-node
!      Hopf bifurcation: cycle-to-point connections
!
! Parameters:
!   PAR(1) : nu1
!   PAR(2) : nu2
!   PAR(3) : d
!   PAR(4) : codimension of connection (0 or 1)
!
!   PAR(5) : delta: distance from cycle to start connection
!   PAR(6) : eps: distance from end connection to point
!   PAR(7) : mu: log of the Floquet multiplier
!   PAR(8) : h: norm of eigenfunction for cycle at 0
!   PAR(9) : T^-: time for connection from cycle (U(7:9)) to section
!   PAR(10) : T^+: time for connection from section (U(10:12)) to point
!   PAR(11) : T: period of the cycle
!   PAR(21) : sigma-: U1(9)-pi (phi-distance W^u(P) from section phi=pi)
!                     ( distance to W^u(b) for codim 0 connection)
!   PAR(22) : sigma+: U0(12)-pi (phi-distance W^s(E) from section phi=pi)
!   PAR(23) : eta: gap size for Lin vector
!   PAR(24) : Z_x: Lin vector (x-coordinate)
!   PAR(25) : Z_y: Lin vector (y-coordinate)
!   PAR(26) : Z_z: Lin vector (z-coordinate)
!---------------------------------------------------------------------
!---------------------------------------------------------------------

  SUBROUTINE RHS(U,PAR,F,JAC,A)

    IMPLICIT NONE
    DOUBLE PRECISION, INTENT(IN) :: U(3), PAR(*)
    LOGICAL, INTENT(IN) :: JAC
    DOUBLE PRECISION, INTENT(OUT) :: F(3), A(3,3)

    DOUBLE PRECISION x, y, phi
    DOUBLE PRECISION nu1, nu2, alpha, beta, omega, c, d, fp, s
    DOUBLE PRECISION sphi, x2y2, cphinu, cphinu2

    nu1 = PAR(1)
    nu2 = PAR(2)
    d = PAR(3)
    fp = 4*atan(1.0d0)*d
    alpha = -1
    s = -1
    c = 0
    omega = 1
    beta = 0

    x = U(1)
    y = U(2)
    phi = U(3)

    sphi = sin(phi)
    x2y2 = x*x + y*y
    cphinu = 2*cos(phi)+nu2
    cphinu2 = cphinu*cphinu

    F(1) = nu1*x - omega*y - (alpha*x - beta*y)*sphi - x2y2*x + d*cphinu2
    F(2) = nu1*y + omega*x - (alpha*y + beta*x)*sphi - x2y2*y + fp*cphinu2
    F(3) = nu2 + s*x2y2 + 2.0*cos(phi) + c*x2y2*x2y2

    IF(JAC)THEN
       A(1,1) = nu1 - alpha*sphi - 3*x**2 - y**2
       A(1,2) = -omega + beta*sphi - 2*x*y
       A(1,3) = -(alpha*x - beta*y)*cos(phi) - d*4*(2*cos(phi)+nu2)*sphi

       A(2,1) = omega - beta*sphi - 2*x*y
       A(2,2) = nu1 - alpha*sphi - 3*y**2 - x*x
       A(2,3) = -(alpha*y + beta*x)*cos(phi) - fp*4*(2*cos(phi) + nu2)*sphi

       A(3,1) = 2*s*x + 4*c*x2y2*x
       A(3,2) = 2*s*y + 4*c*x2y2*y
       A(3,3) = -2*sphi
    ENDIF

  END SUBROUTINE RHS

  SUBROUTINE FUNC(NDIM,U,ICP,PAR,IJAC,F,DFDU,DFDP) 
! ---------- --- 

    IMPLICIT NONE
    INTEGER, INTENT(IN) :: NDIM, IJAC, ICP(*)
    DOUBLE PRECISION, INTENT(IN) :: U(NDIM), PAR(*)
    DOUBLE PRECISION, INTENT(OUT) :: F(NDIM)
    DOUBLE PRECISION, INTENT(INOUT) :: DFDU(NDIM,NDIM),DFDP(NDIM,*)

    DOUBLE PRECISION T,mu
    DOUBLE PRECISION A(3,3)

    CALL RHS(U,PAR,F,NDIM>3,A)
    IF(NDIM==3)RETURN

    F(4:6) = MATMUL(A,U(4:6))

    T = PAR(11)
    F(1:6) = F(1:6) * T

    ! log of Floquet multiplier in PAR(7)
    mu = PAR(7)
    F(4:6) = F(4:6) - mu*U(4:6)

    IF (NDIM==6) RETURN

    CALL RHS(U(7:9),PAR,F(7:9),.FALSE.,A)

    T = PAR(9)
    F(7:9) = F(7:9) * T

    IF (NDIM==9) RETURN

    CALL RHS(U(10:12),PAR,F(10:12),.FALSE.,A)

    T = PAR(10)
    F(10:12) = F(10:12) * T

  END SUBROUTINE FUNC

  SUBROUTINE STPNT(NDIM,U,PAR,T)
  !--------- -----
  
    IMPLICIT NONE
    INTEGER, INTENT(IN) :: NDIM
    DOUBLE PRECISION, INTENT(INOUT) :: U(NDIM),PAR(*)
    DOUBLE PRECISION, INTENT(IN) :: T

    INTEGER, PARAMETER :: codim = 1
    DOUBLE PRECISION, PARAMETER :: nu1 = 0, nu2 = -1.46d0, d = 0.01d0
    DOUBLE PRECISION, PARAMETER :: delta = -1d-5, eps = 1d-6
    DOUBLE PRECISION fp(3), ev(3), pi
    DOUBLE PRECISION, SAVE :: s(6)

    IF(NDIM==9)THEN
       IF(T==0)THEN
          s(1:6) = U(1:6)
       ENDIF
       U(7:9) = s(1:3) + PAR(5)*s(4:6)
       RETURN
    ELSEIF(NDIM==12)THEN
       fp = (/0d0, 0d0, acos(-nu2/2)/)
       ev = (/0d0, 0d0, 1d0/)
       U(10:12) = fp(1:3) + PAR(6)*ev(1:3)
       RETURN
    ENDIF

    PAR(1:3) = (/nu1,nu2,d/)
    PAR(4) = codim
    PAR(5) = delta
    PAR(6) = eps
    PAR(21:22) = 0.0

    ! homotopy: equilibrium b and its phase-shifted version, to find
    ! the "heteroclinic" orbit in negative time.
    pi = 4 * ATAN(1D0)
    PAR(11) = -0.1
    PAR(12) = 0
    PAR(13) = 0
    PAR(14) = acos(-PAR(2)/2)
    PAR(15) = 0
    PAR(16) = 0
    PAR(17) = acos(-PAR(2)/2)+2*pi
    PAR(18) = 0.01d0 ! epsilon_0 distance

    ! equilibrium a
    U(1:3) = (/ 0.0d0, 0.0d0, 2*pi-acos(-nu2/2) /)

  END SUBROUTINE STPNT

  SUBROUTINE PVLS(NDIM,U,PAR)
  !--------- ----

    IMPLICIT NONE
    INTEGER, INTENT(IN) :: NDIM
    DOUBLE PRECISION, INTENT(IN) :: U(NDIM)
    DOUBLE PRECISION, INTENT(INOUT) :: PAR(*)
    
    DOUBLE PRECISION, EXTERNAL :: GETP
    DOUBLE PRECISION d(3), normlv
    INTEGER i, NBC, codim
    DOUBLE PRECISION pi
    LOGICAL, SAVE :: FIRST = .TRUE.

    IF (FIRST) THEN
       FIRST = .FALSE.
       ! initialization for BCND
       pi = 4d0 * ATAN(1d0)
       IF (NDIM==9) THEN
          codim = NINT(PAR(4))
          IF (codim == 0) THEN
             IF (PAR(21)==0) THEN
                ! distance to W^u(b) where b is the phase-shifted equilibrium
                PAR(21) = GETP("BV1",9,U) - PAR(17)
             ENDIF
          ELSE
             PAR(21) = GETP("BV0",9,U) - pi
          ENDIF
       ELSEIF (NDIM==12) THEN
          NBC = AINT(GETP("NBC",0,U))
          IF (NBC==15) THEN
             PAR(22) = GETP("BV0",12,U) - pi
          ELSE
             ! check if Lin vector initialized:
             IF (DOT_PRODUCT(PAR(24:26),PAR(24:26)) > 0) RETURN
             DO i=1,3
                d(i) = GETP("BV1",6+i,U) - GETP("BV0",9+i,U)
             ENDDO
             normlv = sqrt(DOT_PRODUCT(d,d))
             ! gap size in PAR(23)
             PAR(23) = normlv
             ! Lin vector in PAR(24)-PAR(26)
             PAR(24:26) = d(1:3)/normlv
          ENDIF
       ENDIF
    ENDIF
  END SUBROUTINE PVLS

  SUBROUTINE BCND(NDIM,PAR,ICP,NBC,U0,U1,FB,IJAC,DBC)
  !--------- ----

    IMPLICIT NONE
    INTEGER, INTENT(IN) :: NDIM, ICP(*), NBC, IJAC
    DOUBLE PRECISION, INTENT(IN) :: PAR(*), U0(NDIM), U1(NDIM)
    DOUBLE PRECISION, INTENT(OUT) :: FB(NBC)
    DOUBLE PRECISION, INTENT(INOUT) :: DBC(NBC,*)

    DOUBLE PRECISION nu2, delta, eps, fp(3), ev(3), eta
    DOUBLE PRECISION pi
    INTEGER codim

    ! Periodicity boundary conditions on state variables
    FB(1:3) = U0(1:3) - U1(1:3)

    ! Floquet boundary condition
    FB(4:6) = U1(4:6) - U0(4:6)

    ! normalization
    FB(7) = PAR(8) - DOT_PRODUCT(U0(4:6),U0(4:6))
    IF (NBC==7) RETURN

    delta = PAR(5)
    FB(8:10) = U0(7:9) - (U0(1:3) + delta*U0(4:6))
    pi = 4d0 * ATAN(1d0)
    codim = NINT(PAR(4))
    IF(codim == 0)THEN
       ! projection boundary condition for codimension-zero connection
       nu2 = PAR(2)
       FB(11) = COS(U1(9) - PAR(21)) +nu2/2
       RETURN
    ENDIF
    FB(11) = U1(9) - pi - PAR(21)

    IF (NBC==11) RETURN

    nu2 = PAR(2)
    eps = PAR(6)
    IF (abs(nu2) > 2) THEN
       ! truncate nu2 to [-2,2] to avoid floating point exceptions with acos
       nu2 = sign(2d0, nu2)
    ENDIF

    fp = (/0d0, 0d0, acos(-nu2/2)/)
    ev = (/0d0, 0d0, 1d0/)

    FB(12:14) = U1(10:12) - (fp(1:3) + eps*ev(1:3))

    IF (NBC==15) THEN
       FB(15) = U0(12) - pi - PAR(22)
       RETURN
    ENDIF

    eta = PAR(23)
    FB(15:17) = U1(7:9) - U0(10:12) - eta*PAR(24:26)

  END SUBROUTINE BCND

  SUBROUTINE ICND(NDIM,PAR,ICP,NINTS,U,UOLD,UDOT,UPOLD,FI,IJAC,DINT)
  !--------- ----
    IMPLICIT NONE
    INTEGER, INTENT(IN) :: NDIM, ICP(*), NINTS, IJAC
    DOUBLE PRECISION, INTENT(IN) :: PAR(*)
    DOUBLE PRECISION, INTENT(IN) :: U(NDIM), UOLD(NDIM), UDOT(NDIM), UPOLD(NDIM)
    DOUBLE PRECISION, INTENT(OUT) :: FI(NINTS)
    DOUBLE PRECISION, INTENT(INOUT) :: DINT(NINTS,*)

    INTEGER codim

    ! Integral phase condition
    FI(1) = DOT_PRODUCT(U(1:3),UPOLD(1:3))
    IF (NINTS==1) RETURN

    codim = NINT(PAR(4))
    IF (codim == 0) THEN
       ! phase condition for codimension-zero connection
       FI(2) = DOT_PRODUCT(UPOLD(7:9),U(7:9)-UOLD(7:9))
       RETURN
    ENDIF
    FI(2) = DOT_PRODUCT(UPOLD(10:12),U(10:12)-UOLD(10:12))
  END SUBROUTINE ICND

  SUBROUTINE FOPT(NDIM,U,ICP,PAR,IJAC,FS,DFDU,DFDP)
  END SUBROUTINE FOPT